论文标题

通过机器学习验证系外行星:50个新的经过验证的开普勒行星

Exoplanet Validation with Machine Learning: 50 new validated Kepler planets

论文作者

Armstrong, David J., Gamper, Jevgenij, Damoulas, Theodoros

论文摘要

迄今为止,已经发现了〜4000个已知系外行星中的30%以上是使用“验证”发现的,其中计算出由假阳性(FP)引起的过境的统计可能性,即计算非航天的情况。对于这些经过验证的行星计算的绝大多数是使用VESPA算法进行的(Morton等,2016)。无论VESPA的优点和劣势如何,已知行星的目录都不依赖于单一方法,这是非常理想的。我们演示了机器学习算法的使用,特别是由其他模型加强的高斯过程分类器(GPC)来执行概率的行星验证,其中包含了可能的FP方案的先前概率。当在开普勒阈值交叉事件(TCE)目录中将确认的行星与FPS分开时,GPC可以达到0.54的平均日志损失。一旦计算出适用的审查指标,我们的模型就可以在几秒钟内验证数千名看不见的候选人,并且可以适应与主动苔丝任务一起工作,在该任务中,观察到的大量目标需要使用自动化算法。我们讨论了这种方法的局限性和警告,并在考虑了可能的故障模式后,新近验证了50个开普勒候选者作为行星,通过使用最新的恒星信息向VESPA确认VESPA来检查验证。关于与Vespa的差异有关许多其他候选人的差异,这些候选人通常会决定我们的模型。在此类问题的情况下,我们警告不要使用任何一种方法使用单方法行星验证,直到完全理解差异为止。

Over 30% of the ~4000 known exoplanets to date have been discovered using 'validation', where the statistical likelihood of a transit arising from a false positive (FP), non-planetary scenario is calculated. For the large majority of these validated planets calculations were performed using the vespa algorithm (Morton et al. 2016). Regardless of the strengths and weaknesses of vespa, it is highly desirable for the catalogue of known planets not to be dependent on a single method. We demonstrate the use of machine learning algorithms, specifically a gaussian process classifier (GPC) reinforced by other models, to perform probabilistic planet validation incorporating prior probabilities for possible FP scenarios. The GPC can attain a mean log-loss per sample of 0.54 when separating confirmed planets from FPs in the Kepler threshold crossing event (TCE) catalogue. Our models can validate thousands of unseen candidates in seconds once applicable vetting metrics are calculated, and can be adapted to work with the active TESS mission, where the large number of observed targets necessitates the use of automated algorithms. We discuss the limitations and caveats of this methodology, and after accounting for possible failure modes newly validate 50 Kepler candidates as planets, sanity checking the validations by confirming them with vespa using up to date stellar information. Concerning discrepancies with vespa arise for many other candidates, which typically resolve in favour of our models. Given such issues, we caution against using single-method planet validation with either method until the discrepancies are fully understood.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源