论文标题

物理集成的机器学习:将神经网络嵌入Navier-Stokes方程中。第一部分

Physics-integrated machine learning: embedding a neural network in the Navier-Stokes equations. Part I

论文作者

Iskhakov, Arsen S., Dinh, Nam T.

论文摘要

在本文中,研究了物理学 - (或PDE-)集成机器学习(ML)框架。 Navier-Stokes(NS)方程是使用Chorin的投影方法使用Python的Tensorflow库来求解的。提供了解决方案的方法,该方法与在Fortran中实现的经典解决方案进行了比较。该解决方案与神经网络(NN)集成。这样的集成使人们可以在NN的直接输出中训练嵌入在NS方程中的NN;取而代之的是,对NN进行了对现场数据(感兴趣量)的培训,该数据是NS方程的解决方案。为了证明框架的性能,制定了一个案例研究:考虑了具有非恒定速度依赖性动态粘度的2D盖驱动腔。对NN进行了训练,可以预测速度场的动态粘度。当直接在可用数据(动态粘度的字段)上训练NN时,将物理集成的ML的性能与经典ML框架进行了比较。这两个框架都表现出相似的精度。但是,尽管具有其复杂性和计算成本,但物理综合的ML提供了主要优势,即:(i)NN的目标输出(标记的培训数据)可能是未知的,并且可以使用PDE恢复; (ii)不必从大数据中提取和预处理信息(培训目标),而是可以由PDE提取; (iii)无需采用物理或规模分离假设来构建闭合模型。本文证明了优势(i),而优势(ii)和(iii)是未来工作的主题。 PDE与ML的集成为更紧密的数据知识连接打开了一扇门,这可能会影响基于物理的模型的进一步开发,用于数据驱动的热流体模型。

In this paper the physics- (or PDE-) integrated machine learning (ML) framework is investigated. The Navier-Stokes (NS) equations are solved using Tensorflow library for Python via Chorin's projection method. The methodology for the solution is provided, which is compared with a classical solution implemented in Fortran. This solution is integrated with a neural network (NN). Such integration allows one to train a NN embedded in the NS equations without having the target (labeled training) data for the direct outputs from the NN; instead, the NN is trained on the field data (quantities of interest), which are the solutions for the NS equations. To demonstrate the performance of the framework, a case study is formulated: the 2D lid-driven cavity with non-constant velocity-dependent dynamic viscosity is considered. A NN is trained to predict the dynamic viscosity from the velocity fields. The performance of the physics-integrated ML is compared with classical ML framework, when a NN is directly trained on the available data (fields of the dynamic viscosity). Both frameworks showed similar accuracy; however, despite its complexity and computational cost, the physics-integrated ML offers principal advantages, namely: (i) the target outputs (labeled training data) for a NN might be unknown and can be recovered using PDEs; (ii) it is not necessary to extract and preprocess information (training targets) from big data, instead it can be extracted by PDEs; (iii) there is no need to employ a physics- or scale-separation assumptions to build a closure model. The advantage (i) is demonstrated in this paper, while the advantages (ii) and (iii) are the subjects for future work. Such integration of PDEs with ML opens a door for a tighter data-knowledge connection, which may potentially influence the further development of the physics-based modelling with ML for data-driven thermal fluid models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源