论文标题

有效FCN:整体引导的语义分割解码

EfficientFCN: Holistically-guided Decoding for Semantic Segmentation

论文作者

Liu, Jianbo, He, Junjun, Zhang, Jiawei, Ren, Jimmy S., Li, Hongsheng

论文摘要

性能和效率对语义细分都很重要。最新的语义分割算法主要基于扩张的完全卷积网络(扩张FCN),该网络采用骨干网络中扩张的卷积以提取高分辨率特征图以实现高性能分段性能。但是,由于许多卷积操作是在高分辨率特征图上进行的,因此这种基于扩张的方法的方法导致了大量的计算复杂性和记忆消耗。为了平衡性能和效率,还存在编码器折叠结构,这些结构通过结合编码器的多层次特征图逐渐恢复空间信息。但是,现有的编码器方法的性能远不能与基于扩张的FCN方法相媲美。在本文中,我们提出了有效的FCN,其主链是一个常见的成像网预训练网络而没有任何扩张的卷积。引入了整体引导的解码器,以通过编码器的多尺度特征获得高分辨率语义富特征图。解码任务转换为新颖的代码书生成和代码字汇编任务,该任务占据了编码器的高级和低级功能的优势。与仅1/3计算成本的最新方法相比,这样的框架可以实现可比甚至更好的性能。在Pascal环境,Pascal VOC,ADE20K上进行了广泛的实验,验证了拟议的有效性FCN的有效性。

Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated convolutions in the backbone networks to extract high-resolution feature maps for achieving high-performance segmentation performance. However, due to many convolution operations are conducted on the high-resolution feature maps, such dilatedFCN-based methods result in large computational complexity and memory consumption. To balance the performance and efficiency, there also exist encoder-decoder structures that gradually recover the spatial information by combining multi-level feature maps from the encoder. However, the performances of existing encoder-decoder methods are far from comparable with the dilatedFCN-based methods. In this paper, we propose the EfficientFCN, whose backbone is a common ImageNet pre-trained network without any dilated convolution. A holistically-guided decoder is introduced to obtain the high-resolution semantic-rich feature maps via the multi-scale features from the encoder. The decoding task is converted to novel codebook generation and codeword assembly task, which takes advantages of the high-level and low-level features from the encoder. Such a framework achieves comparable or even better performance than state-of-the-art methods with only 1/3 of the computational cost. Extensive experiments on PASCAL Context, PASCAL VOC, ADE20K validate the effectiveness of the proposed EfficientFCN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源