论文标题

通过基于电化学模型的自适应互连观察者的锂离子电池电池的在线容量估计

On-line Capacity Estimation for Lithium-ion Battery Cells via an Electrochemical Model-based Adaptive Interconnected Observer

论文作者

Allam, Anirudh, Onori, Simona

论文摘要

电池老化是一个自然的过程,会导致容量和功率逐渐消失,从而导致随着时间和用法的逐渐降解。由于缺乏直接测量,对电池老化电池的电荷状态(SOC)和健康状态(SOH)监测对电池管理系统(BMS)构成了具有挑战性的任务。基于电化学模型的估计算法考虑到衰老对物理电池参数的影响,可以在电池可用的寿命上提供有关锂浓度和电池容量的准确信息。一个依赖温度的电化学模型,增强的单个颗粒模型(ESPM),是合成自适应互连的观察者合成的基础,该观察者由于固体电解质互相(SEI)的增长而利用能力和功率褪色之间的关系,以实现状态的综合估计(静脉输液)(静脉输液)(静脉内电源)(静脉内电源)(静态)(静脉输液)(静脉体)(静态)(静脉体)(静脉输液)(静脉体)(静态)的浓度(静态) SEI层离子电导率)。自适应观察者的实际稳定性条件是使用Lyapunov的理论得出的。针对实验数据的验证结果表明,在其真实值的2%之内,有界的容量估计误差。此外,在衰老的不同阶段测试了容量估计的有效性。研究了测量噪声和传感器偏置下容量估计的鲁棒性。

Battery aging is a natural process that contributes to capacity and power fade, resulting in a gradual performance degradation over time and usage. State of Charge (SOC) and State of Health (SOH) monitoring of an aging battery poses a challenging task to the Battery Management System (BMS) due to the lack of direct measurements. Estimation algorithms based on an electrochemical model that take into account the impact of aging on physical battery parameters can provide accurate information on lithium concentration and cell capacity over a battery's usable lifespan. A temperature-dependent electrochemical model, the Enhanced Single Particle Model (ESPM), forms the basis for the synthesis of an adaptive interconnected observer that exploits the relationship between capacity and power fade, due to the growth of Solid Electrolyte Interphase layer (SEI), to enable combined estimation of states (lithium concentration in both electrodes and cell capacity) and aging-sensitive transport parameters (anode diffusion coefficient and SEI layer ionic conductivity). The practical stability conditions for the adaptive observer are derived using Lyapunov's theory. Validation results against experimental data show a bounded capacity estimation error within 2% of its true value. Further, effectiveness of capacity estimation is tested for two cells at different stages of aging. Robustness of capacity estimates under measurement noise and sensor bias are studied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源