论文标题
优化问题的均等公式中的最小限制
Minimal Constraints in the Parity Formulation of Optimization Problems
论文作者
论文摘要
作为使用量子计算机解决优化问题的一种手段,该问题通常被重新生要到一个iSing旋转模型中,该模型的解决方案是优化问题的解决方案。 Ising公式的一种替代方法是Lechner-Hauke-Zoller模型,该模型具有带有最近邻居4体约束的晶格仪模型的形式。在这里,我们介绍了一种方法,以找到保存正确地面态所需的约束强度的最小强度。基于此,我们得出了最小约束强度的上限和下限。我们发现,根据问题类别的不同,指数范围从线性$α\ propto 1 $到二次$α\ propto 2 $缩放的逻辑量子数量。
As a means to solve optimization problems using quantum computers, the problem is typically recast into a Ising spin model whose ground-state is the solution of the optimization problem. An alternative to the Ising formulation is the Lechner-Hauke-Zoller model, which has the form of a lattice gauge model with nearest neighbor 4-body constraints. Here we introduce a method to find the minimal strength of the constraints which are required to conserve the correct ground-state. Based on this, we derive upper and lower bounds for the minimal constraints strengths. We find that depending on the problem class, the exponent ranges from linear $α\propto 1$ to quadratic $α\propto 2$ scaling with the number of logical qubits.