论文标题

与大量消费者的巧克力曲奇构图的投影映射的几何和统计技术

Geometric and statistical techniques for projective mapping of chocolate chip cookies with a large number of consumers

论文作者

Orden, David, Fernández-Fernández, Encarnación, Tejedor-Romero, Marino, Martínez-Moraian, Alejandra

论文摘要

事实证明,所谓的快速感官方法对不同类型的面板(从训练有素的评估者到不经验的消费者)对食物的感觉研究很有用。传统上,这些方法的数据已通过统计技术进行了分析,最近的一些著作提出了使用几何技术和图理论的使用。目前的工作旨在加深这一研究,引入了一种新方法,将统计和图理论的工具混合在一起,以分析投影映射的数据。此外,首次在投影映射中考虑了大量n = 349个未经经验的消费者,评估了九种商业巧克力芯片饼干,其中包括跨国畅销品牌和7个私人标签的盲目重复。使用标准统计技术多重因子分析(MFA)处理获得的数据,使用Gabriel簇的最近出现的几何方法感觉仪以及此处介绍的新型变体基于样本之间的成对距离。所有方法都提供相同的样品组,而盲重构成出现在一起。最后,使用引导以及RV和壁炉架系数研究结果的稳定性。结果表明,即使对于没有经验的消费者,在考虑足够数量的评估者时,MFA和感觉仪也可以取得高度稳定的结果,对于MFA的共识图或全球感觉矩阵的共识图约为200个。

The so-called rapid sensory methods have proved to be useful for the sensory study of foods by different types of panels, from trained assessors to unexperienced consumers. Data from these methods have been traditionally analyzed using statistical techniques, with some recent works proposing the use of geometric techniques and graph theory. The present work aims to deepen this line of research introducing a new method, mixing tools from statistics and graph theory, for the analysis of data from Projective Mapping. In addition, a large number of n=349 unexperienced consumers is considered for the first time in Projective Mapping, evaluating nine commercial chocolate chips cookies which include a blind duplicate of a multinational best-selling brand and seven private labels. The data obtained are processed using the standard statistical technique Multiple Factor Analysis (MFA), the recently appeared geometric method SensoGraph using Gabriel clustering, and the novel variant introduced here which is based on the pairwise distances between samples. All methods provide the same groups of samples, with the blind duplicates appearing close together. Finally, the stability of the results is studied using bootstrapping and the RV and Mantel coefficients. The results suggest that, even for unexperienced consumers, highly stable results can be achieved for MFA and SensoGraph when considering a large enough number of assessors, around 200 for the consensus map of MFA or the global similarity matrix of SensoGraph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源