论文标题

在$a_α$ -spectra上的一些加入图

On the $A_α$-spectra of some join graphs

论文作者

Basunia, Mainak, Mahato, Iswar, Kannan, M. Rajesh

论文摘要

令$ g $为简单,连接的图形,让$ a(g)$为$ g $的邻接矩阵。如果$ d(g)$是$ g $的对角线矩阵,那么对于[0,1] $中的每个实际$α\,矩阵$a_α(g)$被定义为$$a_α(g)=αd(g)=αd(g) +(1-α)a(1-α)a(g)$ a_ $ a_ $ a_ $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ $a_α$ -spectrum $ g $。令$ g_1 \ dot {\ vee} g_2 $,$ g_1 \ undesline {\ vee} g_2 $,$ g_1 \ langle \ textrm {v} \ rangle g_2 $和$ g_1 \ g_1 \ langle \ langle \ langle \ textrm {e} - {e} - {e} \ rangle g_2细分边缘连接,$ r $ -VERTEX JOIN和$ r $ - 两个图的JOIN $ g_1 $和$ g_2 $。在本文中,我们计算$ g_1 \ dot {\ vee} g_2 $,$ g_1 \ useverline {\ vee} g_2 $,$ g_1 \ langle \ langle \ textrm {v} \ rangle g_2 $ g_2 $ g_1 \ langle for for $ g_1 \ dot {\ vee} g_2 $,$ g_1常规图$ g_1 $和任意图$ g_2 $,其$a_α$ - eigenvalues。作为这些结果的应用,我们构建了无限的多对$a_α$ cosectral图。

Let $G$ be a simple, connected graph and let $A(G)$ be the adjacency matrix of $G$. If $D(G)$ is the diagonal matrix of the vertex degrees of $G$, then for every real $α\in [0,1]$, the matrix $A_α(G)$ is defined as $$A_α(G) = αD(G) + (1- α) A(G).$$ The eigenvalues of the matrix $A_α(G)$ form the $A_α$-spectrum of $G$. Let $G_1 \dot{\vee} G_2$, $G_1 \underline{\vee} G_2$, $G_1 \langle \textrm{v} \rangle G_2$ and $G_1 \langle \textrm{e} \rangle G_2$ denote the subdivision-vertex join, subdivision-edge join, $R$-vertex join and $R$-edge join of two graphs $G_1$ and $G_2$, respectively. In this paper, we compute the $A_α$-spectra of $G_1 \dot{\vee} G_2$, $G_1 \underline{\vee} G_2$, $G_1 \langle \textrm{v} \rangle G_2$ and $G_1 \langle \textrm{e} \rangle G_2$ for a regular graph $G_1$ and an arbitrary graph $G_2$ in terms of their $A_α$-eigenvalues. As an application of these results, we construct infinitely many pairs of $A_α$-cospectral graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源