论文标题

NPLCS和POMDP的可计数MDP和见解的果断性

Decisiveness for countable MDPs and insights for NPLCSs and POMDPs

论文作者

Bertrand, Nathalie, Bouyer, Patricia, Brihaye, Thomas, Fournier, Paulin, Vandenhove, Pierre

论文摘要

马尔可夫连锁店和马尔可夫决策过程(MDP)是良好的概率模型。尽管有限的马尔可夫模型得到了充分理解,但分析其无限同行仍然是一个重大挑战。事实证明,果断性是马尔可夫连锁店的优雅特性:它足够普遍,可以被几种自然的可计数马尔可夫链所满足,并且它是一种简单定性和近似定量的模型检查算法的充分条件。 相反,现有的对可数MDP的正式分析的作品通常依赖于针对特定类别量身定制的临时技术。我们在这里提供了一个通用框架,可以通过扩展果断性的概念来分析可计数的MDP。与马尔可夫连锁店相比,MDP表现出额外的非决定性主义,可以以对抗性或合作的方式解决,从而导致多种自然概念的决定性概念。我们表明,这些概念可以使用简单的模型检查程序在可数MDP中的可及性和安全概率的近似值。 然后,我们将通用方法实例化,以诱导可数MDP的两个具体类别的模型类别:非确定性概率有损通道系统和部分可观察到的MDP。这导致算法大致计算每个类别中的安全概率。

Markov chains and Markov decision processes (MDPs) are well-established probabilistic models. While finite Markov models are well-understood, analysing their infinite counterparts remains a significant challenge. Decisiveness has proven to be an elegant property for countable Markov chains: it is general enough to be satisfied by several natural classes of countable Markov chains, and it is a sufficient condition for simple qualitative and approximate quantitative model-checking algorithms to exist. In contrast, existing works on the formal analysis of countable MDPs usually rely on ad hoc techniques tailored to specific classes. We provide here a general framework to analyse countable MDPs by extending the notion of decisiveness. Compared to Markov chains, MDPs exhibit extra non-determinism that can be resolved in an adversarial or cooperative way, leading to multiple natural notions of decisiveness. We show that these notions enable the approximation of reachability and safety probabilities in countable MDPs using simple model-checking procedures. We then instantiate our generic approach to two concrete classes of models inducing countable MDPs: non-deterministic probabilistic lossy channel systems and partially observable MDPs. This leads to an algorithm to approximately compute safety probabilities in each of these classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源