论文标题
基于非加工熵的广义$ Q $增长模型
A generalized $q$ growth model based on nonadditive entropy
论文作者
论文摘要
我们提出了基于非扩展统计物理学的一般增长模型。获得的方程式用非辅助$ Q $熵表示。我们表明,可以获得可以获得最常见的一维增长定律,例如权力法,指数,物流,理查兹,von Bertalanffy,Gompertz。该模型属于(Physica A 369,645(2006))中报道的特定情况。新的进化方程类似于West为个体发育生长所揭示的“普遍性”(自然413,628(2001))。我们表明,在早期,模型遵循功率定律增长为$ n(t)\ of t t ^ d $,其中指数$ d \ equiv \ equiv \ frac {1} {1-q} $分类了不同类型的增长。给出并讨论了几个示例。
We present a general growth model based on non-extensive statistical physics is presented. The obtained equation is expressed in terms of nonadditive $q$ entropy. We show that the most common unidimensional growth laws such as power law, exponential, logistic, Richards, Von Bertalanffy, Gompertz can be obtained. This model belongs as a particular case reported in (Physica A 369, 645 (2006)). The new evolution equation resembles the "universality" revealed by West for ontogenetic growth (Nature 413, 628 (2001)). We show that for early times the model follows a power law growth as $ N(t) \approx t ^ D $, where the exponent $D \equiv \frac{1}{1-q}$ classifies different types of growth. Several examples are given and discussed.