论文标题
用于定向无线电源传输的一维拓扑式隔离链
One-dimensional topological quasiperiodic chain for directional wireless power transfer
论文作者
论文摘要
作为一系列重要的系统,具有超越周期性晶格的独特拓扑作用,近年来,准二元拓扑结构引起了很多关注。由于准二体调制,准二元拓扑结构中的拓扑状态具有自相似性的特征,可用于观察迷人的霍夫斯塔特蝴蝶。另外,由于不对称分布,准碘链中的边缘状态可用于实现绝热泵。当准二元拓扑晶格中的拓扑参数被认为是合成维度时,它们也可以用于研究具有较高维度的拓扑特性。在这里,通过使用超波长的谐振器,我们设计并制造了一种具有不对称拓扑边缘状态的一维准二维式Harper链,用于定向无线功率传递(WPT)。通过进一步将电源引入系统,我们选择性地点亮了两个汉字,这些汉字由链条的两端由LED灯组成。此外,拓扑准二元链实现的定向WPT具有拓扑保护的特性,该拓扑具有不受结构内部疾病扰动的影响。我们不仅将非对称边缘状态应用于方向WPT,而且还可以通过使用外部电压进一步积极地控制方向WPT。此外,这项工作还提供了一个灵活的平台,用于设计新的WPT设备,例如在高阶拓扑结构中使用角状态,或在非热拓扑晶格中使用皮肤效应。
As an important class of systems with unique topological effects beyond the periodic lattices, quasiperiodic topological structures have attracted much attention in recent years. Due to the quasiperiodic modulation, the topological states in the quasiperiodic topological structures have the characteristics of self-similarity, which can be used to observe the charming Hofstadter butterfly. In addition, because of the asymmetric distribution, the edge states in quasiperiodic chain can be used to realize the adiabatic pumping. When the topological parameters in quasiperiodic topological lattices are considered as synthetic dimensions, they can also be used to study the topological properties with higher dimensions. Here, by using ultra-subwavelength resonators, we design and fabricate a type of one-dimensional quasiperiodic Harper chain with asymmetric topological edge states for the directional wireless power transfer (WPT). By further introducing a power source into the system, we selectively light up two Chinese characters which is composed of LED lamps at both ends of the chain. Moreover, the directional WPT implemented by the topological quasiperiodic chain has the property of topological protection, which is immune to the internal disorder perturbation of the structure. Not only do we apply the asymmetric edge state for directional WPT, but also may further actively control the directional WPT by using the external voltage. In addition, this work provides a flexible platform for designing new WPT devices, such as using the corner states in high-order topological structures or the skin effect in the non-Hermitian topological lattices.