论文标题
弱非对称归一化二进制接触过程的非平衡波动
Non-equilibrium Fluctuations of the Weakly Asymmetric Normalized Binary Contact Path Process
论文作者
论文摘要
本文是对在\ cite {xUe2020氢动力学}中研究的问题的进一步研究,在该问题中,作者证明了大量定律,用于$ \ mathbb {z}^d,\,d \ qe 3 $的经验衡量的经验度量,并以限制限制了一个限制a的条件。我们证明,当基础晶格的尺寸$ d $和流程的感染率$λ$足够大时,上述猜想是正确的。
This paper is a further investigation of the problem studied in \cite{xue2020hydrodynamics}, where the authors proved a law of large numbers for the empirical measure of the weakly asymmetric normalized binary contact path process on $\mathbb{Z}^d,\, d \geq 3$, and then conjectured that a central limit theorem should hold under a non-equilibrium initial condition. We prove that the aforesaid conjecture is true when the dimension $d$ of the underlying lattice and the infection rate $λ$ of the process are sufficiently large.