论文标题

lazy队列posets的布局

Lazy Queue Layouts of Posets

论文作者

Alam, Jawaherul Md., Bekos, Michael A., Gronemann, Martin, Kaufmann, Michael, Pupyrev, Sergey

论文摘要

我们根据其宽度(即成对无与伦比的元素的最大数量)研究了POSET的队列数量。长期以来的荒地和彭马拉朱(Pemmaraju)的猜想断言,每个宽度的poset w w w w。通过所谓的懒惰线性扩展,已经确认了宽度W = 2的POSET的猜想。 我们扩展并彻底分析了宽度w> 2的POSET的懒惰线性扩展。我们的分析意味着$(W-1)^2 +1 $的上限在宽度-W Posets的队列数量上,这对于该策略来说很紧,并且比以前最不知名的界限进行了改进。此外,我们提供了一个poset的示例,该poset在每个线性扩展中至少需要W+1个队列,从而反驳了宽度w> 2的posets的猜想。

We investigate the queue number of posets in terms of their width, that is, the maximum number of pairwise incomparable elements. A long-standing conjecture of Heath and Pemmaraju asserts that every poset of width w has queue number at most w. The conjecture has been confirmed for posets of width w=2 via so-called lazy linear extension. We extend and thoroughly analyze lazy linear extensions for posets of width w > 2. Our analysis implies an upper bound of $(w-1)^2 +1$ on the queue number of width-w posets, which is tight for the strategy and yields an improvement over the previously best-known bound. Further, we provide an example of a poset that requires at least w+1 queues in every linear extension, thereby disproving the conjecture for posets of width w > 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源