论文标题
Planck 2018对各向异性双折射及其与CMB各向异性的互相关的约束
Planck 2018 constraints on anisotropic birefringence and its cross-correlation with CMB anisotropy
论文作者
论文摘要
标准电磁学的奇异侵略扩展产生宇宙双折射,在传播过程中光子的线性极化方向的真空旋转中。我们采用{\ it Planck} 2018 CMB两极化数据来限制各向异性双折射,以其角功率频谱$ c _ {\ ell}^{ααα} $建模,并用CMB温度映射,$ c _ {\ ell} $ 15 $ compy sim act $ cmaps,$ c _} $ cmaps^$ and act $ cmaps。我们提出了规模不变数量的联合限制,$ a^{αα} \ equiv \ ell(\ ell +1)\,c _ {\ ell}^{ααα} / 2π$,以及交叉相交的类似振幅c _ {\ ell}^{αt} /2π$。我们在错误预算内没有发现双折射的证据,可以获得$ a^{ααα} <0.104 \,\ mbox {[deg $^2 $]} $和$ a^{αt} = 1.50^{+2.41} _ {+2.41} _ { - 4.10}} \ mbox {c.l。} $。后者的界限似乎在限制最近提出的一些早期黑暗能源模型来减轻$ H_ {0} $张力方面似乎有竞争力。将联合可能性切成$ a^{αt} = 0 $,在$ a^{ααα} $上绑定在$ a^{ααα} <0.085 \,\ mbox {[deg $^2 $] $ at 95 $ \%\%\ mbox {c.l。} $。此外,我们将$ a^{ααα} $上的约束重新列入了负责法拉第旋转的原始磁场的振幅,找到$ b_ {1 {\ tiny \ tiny \ mbox {mpc}}}}}}} <26.9 $ ng and $ ng and $ ng and $ b_ {1 {1 {\ tiny \ tiny \ mpc} <24 95 $ \%$ c.l.分别为边缘化和切成薄片的情况。
Parity-violating extensions of standard electromagnetism produce cosmic birefringence, the in vacuo rotation of the linear polarisation direction of a photon during propagation. We employ {\it Planck} 2018 CMB polarised data to constrain anisotropic birefringence, modeled by its angular power spectrum $C_{\ell}^{αα}$, and the cross-correlation with CMB temperature maps, $C_{\ell}^{αT}$, at scales larger than $\sim$15 degrees. We present joint limits on the scale invariant quantity, $A^{αα} \equiv \ell (\ell +1) \, C_{\ell}^{αα} / 2 π$, and on the analogous amplitude for the cross-correlation, $A^{αT} \equiv \ell (\ell +1) \, C_{\ell}^{αT} / 2 π$. We find no evidence of birefringence within the error budget and obtain $A^{αα} < 0.104 \, \mbox{[deg$^2$]}$ and $A^{αT}=1.50^{+2.41}_{-4.10} \, \mbox{[$μ$K$\cdot$deg] both at } 95 \% \mbox{ C.L.}$. The latter bound appears competitive in constraining a few early dark energy models recently proposed to alleviate the $H_{0}$ tension. Slicing the joint likelihood at $A^{αT}=0$, the bound on $A^{αα}$ becomes tighter at $A^{αα} < 0.085 \, \mbox{[deg$^2$]}$ at 95$\% \mbox{ C.L.}$. In addition we recast the constraints on $A^{αα}$ as a bound on the amplitude of primordial magnetic fields responsible for Faraday rotation, finding $B_{1 {\tiny \mbox{Mpc}}} < 26.9$ nG and $B_{1 {\tiny \mbox{Mpc}}} < 24.3$ nG at 95$\%$ C.L. for the marginalised and sliced case respectively.