论文标题

$ w_k^{ζ,p} l^\ infty_tl^2_v $ in Boltzmann方程无需截止的全局解决方案

Global solutions in $W_k^{ζ,p}L^\infty_TL^2_v$ for the Boltzmann equation without cutoff

论文作者

Zhang, Haoyu

论文摘要

考虑在三维周期域中没有角截止的玻尔兹曼方程。功能空间中解决方案的全球存在$ W_K^{ζ,P} l^\ infty_tl^2_v $带有$ p> 1 $和$ζ> 3(1- \ frac {1} {p})$在跨性能框架中建立了解决方案的长期行为,也可以在很难获得的解决方案中获得。证明基于几个规范估计。

The Boltzmann equation without an angular cutoff in a three-dimensional periodic domain is considered. The global-in-time existence of solutions in a function space $ W_k^{ζ,p}L^\infty_TL^2_v $ with $p>1$ and $ζ>3(1-\frac{1}{p})$ is established in the perturbation framework and the long-time behavior of solutions is also obtained for both hard and soft potentials. The proof is based on several norm estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源