论文标题

关于Monge-ampère方程和Monge-Ampère系统的概括

On a generalization of Monge-Ampère equations and Monge-Ampère systems

论文作者

Kawamata, Masahiro, Shibuya, Kazuhiro

论文摘要

我们从差异几何学的角度讨论Monge-ampère方程。众所周知,Monge-ampère方程对应于1射流空间上的特殊外部差分系统。在本文中,我们概括了Monge-ampère方程式,并证明了$(k+1)$ streser Permorized Monge-ampère方程对应于$ K $ -JET空间上的特殊外部差速器系统。然后,其解决方案自然对应于相应的外部微分系统的积分歧管。此外,我们验证了Korteweg-de Vries(KDV)方程和Cauchy-Riemann方程是我们方程式的示例。

We discuss Monge-Ampère equations from the view point of differential geometry. It is known that a Monge-Ampère equation corresponds to a special exterior differential system on a 1-jet space. In this paper, we generalize Monge-Ampère equations and prove that a $(k+1)$st order generalized Monge-Ampère equation corresponds to a special exterior differential system on a $k$-jet space. Then its solution naturally corresponds to an integral manifold of the corresponding exterior differential system. Moreover, we verify that the Korteweg-de Vries (KdV) equation and the Cauchy-Riemann equations are examples of our equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源