论文标题

学习动态系统带有附带信息

Learning Dynamical Systems with Side Information

论文作者

Ahmadi, Amir Ali, Khadir, Bachir El

论文摘要

我们提出了一个数学和计算框架,该框架是从嘈杂的一些轨迹观察到的动态系统的问题,并遵守附带信息。侧面信息是我们可能对动态系统有任何知识,除了轨迹数据以外,还要学习。它通常是从特定于领域的知识或科学学科的基本原理中推断出来的。我们有兴趣将侧面信息明确整合到学习过程中,以弥补轨迹观察的稀缺性。我们确定了在许多应用中自然出现的六种类型的侧面信息,并导致学习问题中的凸限制。首先,我们表明,当我们的未知动力系统模型被参数化为多项式时,就可以通过半决赛编程施加我们的侧面信息约束。然后,我们演示了用于学习物理和细胞生物学基本模型的动力学以及学习和控制流行病学模型的动态的附加信息的附加值。最后,我们研究多项式动力学系统如何在满足侧面信息(恰好或大约)的同时近似差异。我们的整体学习方法结合了凸优化,实际代数,动力学系统和功能近似理论的思想,并有可能导致这些领域之间的新协同作用。

We present a mathematical and computational framework for the problem of learning a dynamical system from noisy observations of a few trajectories and subject to side information. Side information is any knowledge we might have about the dynamical system we would like to learn besides trajectory data. It is typically inferred from domain-specific knowledge or basic principles of a scientific discipline. We are interested in explicitly integrating side information into the learning process in order to compensate for scarcity of trajectory observations. We identify six types of side information that arise naturally in many applications and lead to convex constraints in the learning problem. First, we show that when our model for the unknown dynamical system is parameterized as a polynomial, one can impose our side information constraints computationally via semidefinite programming. We then demonstrate the added value of side information for learning the dynamics of basic models in physics and cell biology, as well as for learning and controlling the dynamics of a model in epidemiology. Finally, we study how well polynomial dynamical systems can approximate continuously-differentiable ones while satisfying side information (either exactly or approximately). Our overall learning methodology combines ideas from convex optimization, real algebra, dynamical systems, and functional approximation theory, and can potentially lead to new synergies between these areas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源