论文标题
通过范围分离来驯服扩散蒙特卡洛的固定节点误差
Taming the fixed-node error in diffusion Monte Carlo via range separation
论文作者
论文摘要
通过将密度功能理论(DFT)和波函数理论(WFT)结合在一起,通过电子间库仑操作员的范围分离(RS)结合,我们获得了精确的固定节点扩散蒙特卡洛(FN-DMC)能量,并具有紧凑的多重试验波功能。特别是,我们将这里的短距离交换相关函数与所选配置相互作用(SCI)的风味相结合,称为\ emph {配置相互作用,使用扰动选择进行迭代}(CIPSI)(CIPSI),这是一种我们标记RS-DFT-CIPSI的方案。本研究的带回家信息之一是,RS-DFT-CIPSI试验波函数产生的固定节点能量较低,其固定节点能量比CIPSI更紧凑,尤其是对于小基集。实际上,由于RS-DFT-CIPSI的CIPSI成分可以减轻描述电子电子聚合点周围相关孔的短距离部分,因此与常规CIPSI计算相比,达到给定精度所需的试验波函数所需的决定率数量显着降低。重要的是,通过执行各种数值实验,我们证明RS-DFT方案基本上通过模仿短距离相关效应来扮演简单的jastrow因子的作用,从而避免进行随机优化的负担。考虑到高斯-1基准分子的55个雾化能,我们表明,使用$μ= 0.5 $ 〜BOHR $^{ - 1} $的固定值可提供有效的误差取消以及紧凑的试验波功能,从而使本方法成为对大型化学系统的准确描述的良好候选方法。
By combining density-functional theory (DFT) and wave function theory (WFT) via the range separation (RS) of the interelectronic Coulomb operator, we obtain accurate fixed-node diffusion Monte Carlo (FN-DMC) energies with compact multi-determinant trial wave functions. In particular, we combine here short-range exchange-correlation functionals with a flavor of selected configuration interaction (SCI) known as \emph{configuration interaction using a perturbative selection made iteratively} (CIPSI), a scheme that we label RS-DFT-CIPSI. One of the take-home messages of the present study is that RS-DFT-CIPSI trial wave functions yield lower fixed-node energies with more compact multi-determinant expansions than CIPSI, especially for small basis sets. Indeed, as the CIPSI component of RS-DFT-CIPSI is relieved from describing the short-range part of the correlation hole around the electron-electron coalescence points, the number of determinants in the trial wave function required to reach a given accuracy is significantly reduced as compared to a conventional CIPSI calculation. Importantly, by performing various numerical experiments, we evidence that the RS-DFT scheme essentially plays the role of a simple Jastrow factor by mimicking short-range correlation effects, hence avoiding the burden of performing a stochastic optimization. Considering the 55 atomization energies of the Gaussian-1 benchmark set of molecules, we show that using a fixed value of $μ=0.5$~bohr$^{-1}$ provides effective error cancellations as well as compact trial wave functions, making the present method a good candidate for the accurate description of large chemical systems.