论文标题

从自然对话中实现类似人类的任务识别

Enabling human-like task identification from natural conversation

论文作者

Pramanick, Pradip, Sarkar, Chayan, P, Balamuralidhar, Kattepur, Ajay, Bhattacharya, Indrajit, Pal, Arpan

论文摘要

随着低成本精致的硬件的发展,作为同事或同事的机器人正在日复一日成为主流。但是,可以帮助机器人硬件可用性的随附的软件堆栈仍然是该过程的瓶颈,尤其是如果机器人不专门从事单个工作。编程多功能机器人需要具有涉及任务识别和计划生成的飞行任务调度能力。如果机器人接受自然语言的人类的任务,则问题维度会增加。尽管NLP和计划者开发的最新进展可以解决各种复杂的问题,但它们用于动态机器人任务处理程序的合并用于有限的范围。具体而言,没有详细研究从自然语言指令中提出计划问题的问题。在这项工作中,我们提供了一种非平凡的方法来组合NLP引擎和计划器,以便机器人可以成功识别任务和所有相关参数,并为任务生成准确的计划。此外,需要一些机制来解决自然语言教学中的歧义或丢失的信息。因此,我们还制定了一种对话策略,旨在以最少的问答迭代来收集其他信息,并且仅在必要时才收集。这项工作大步向实现机器人中的人类任务理解能力迈出了重大迈进。

A robot as a coworker or a cohabitant is becoming mainstream day-by-day with the development of low-cost sophisticated hardware. However, an accompanying software stack that can aid the usability of the robotic hardware remains the bottleneck of the process, especially if the robot is not dedicated to a single job. Programming a multi-purpose robot requires an on the fly mission scheduling capability that involves task identification and plan generation. The problem dimension increases if the robot accepts tasks from a human in natural language. Though recent advances in NLP and planner development can solve a variety of complex problems, their amalgamation for a dynamic robotic task handler is used in a limited scope. Specifically, the problem of formulating a planning problem from natural language instructions is not studied in details. In this work, we provide a non-trivial method to combine an NLP engine and a planner such that a robot can successfully identify tasks and all the relevant parameters and generate an accurate plan for the task. Additionally, some mechanism is required to resolve the ambiguity or missing pieces of information in natural language instruction. Thus, we also develop a dialogue strategy that aims to gather additional information with minimal question-answer iterations and only when it is necessary. This work makes a significant stride towards enabling a human-like task understanding capability in a robot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源