论文标题
压缩重力理论中的散射幅度
Scattering Amplitudes in Theories of Compactified Gravity
论文作者
论文摘要
在本文中,我们讨论了矩阵元素的特性,这些矩阵元素描述了压缩重力理论中巨大的自旋2颗粒的散射。我们的主要结果是计算2至2个巨大的Spin-2 Kaluza-Klein(KK)模式散射矩阵元素在Randall-Sundrum 1(RS1)模型中的计算,并且这些矩阵元素的生长速度不超过$ \ MATHCAL {O}(O}(s)$,而KK模式数量和螺旋模式数字不足。因为此计算需要求和无限的Spin-2介导图,每个图都像$ \ Mathcal {O}(s^{5})$相互差异,总体$ \ MATHCAL {O}(o}(S)$的增长只有通过这些图之间的取消才能实现。反过来,这需要在无限的KK模式质量和耦合之间进行复杂的取消。我们得出这些总和,包括它们对完全非弹性过程的概括。我们还考虑了这些矩阵元素在五维的孔曲面(5dot)和大$ kr_ {c} $限制中,研究仅在计算中仅包含有限的人数(如截断错误测量)的影响,并计算五维强的coupling coupling coupling scou $λ_π\ equiv equiv miv mm________ { e^{ - kr_ {c}π} $通过四维散射计算。
In this dissertation we discuss the properties of matrix elements describing the scattering of massive spin-2 particles in theories of compactified gravity. Our primary result is the calculation of 2-to-2 massive spin-2 Kaluza-Klein (KK) mode scattering matrix elements in the Randall-Sundrum 1 (RS1) model and the demonstration that those matrix elements grow no faster than $\mathcal{O}(s)$ irrespective of the KK mode numbers and helicities considered. Because this calculation requires summing infinitely-many spin-2 mediated diagrams which each diverge like $\mathcal{O}(s^{5})$, overall $\mathcal{O}(s)$ growth is only attained through cancellations between these diagrams. This in turn requires intricate cancellations between infinitely-many KK mode masses and couplings. We derive these sum rules, including their generalization to fully inelastic processes. We also consider these matrix elements in the five-dimensional orbifolded torus (5DOT) and large $kr_{c}$ limits, investigate the impact of including only finitely-many diagrams in the calculation (as measured via truncation error), and calculate the five-dimensional strong coupling scale $Λ_π \equiv M_{\text{Pl}}\, e^{-kr_{c}π}$ via the four-dimensional scattering calculation.