论文标题

通过从横视和每个视图挤压混合知识,无监督的多视图聚类

Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from Cross View and Each View

论文作者

Tan, Junpeng, Shi, Yukai, Yang, Zhijing, Wen, Caizhen, Lin, Liang

论文摘要

近年来,由于它们在聚类性能方面的优势,多视图聚类方法一直是重点。但是,典型的传统多视图聚类算法在某些方面仍然存在缺点,例如删除冗余信息,各种视图的利用以及多视图功能的融合。鉴于这些问题,本文提出了一种新的多视图聚类方法,基于自适应图正则化的低率子空间多视图聚类。我们将两个新的数据矩阵分解模型构建为一个统一的优化模型。在此框架中,我们通过在稀疏子空间矩阵上呈现新的低级别和稀疏约束,解决了横视到共享的共同知识的重要性以及每种观点的独特知识。为了确保我们在原始数据矩阵上实现有效的稀疏表示和聚类性能,在拟议的模型中还纳入了自适应图正规化和无监督的聚类约束,以保留数据的内部结构特征。最后,将提出的方法与几种最新算法进行了比较。五个广泛使用的多视图基准的实验结果表明,我们所提出的算法超过了其他最新方法。

Multi-view clustering methods have been a focus in recent years because of their superiority in clustering performance. However, typical traditional multi-view clustering algorithms still have shortcomings in some aspects, such as removal of redundant information, utilization of various views and fusion of multi-view features. In view of these problems, this paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization. We construct two new data matrix decomposition models into a unified optimization model. In this framework, we address the significance of the common knowledge shared by the cross view and the unique knowledge of each view by presenting new low-rank and sparse constraints on the sparse subspace matrix. To ensure that we achieve effective sparse representation and clustering performance on the original data matrix, adaptive graph regularization and unsupervised clustering constraints are also incorporated in the proposed model to preserve the internal structural features of the data. Finally, the proposed method is compared with several state-of-the-art algorithms. Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源