论文标题

DSP:综合实际工业数据集的差分空间预测方案

DSP: A Differential Spatial Prediction Scheme for Comprehensive real industrial datasets

论文作者

Zhang, Junjie, Zhang, Cong, Xiong, Neal N.

论文摘要

反距离加权模型(IDW)已被广泛用于预测和建模多模式工业过程中的多维空间。但是,多维空间的结构越复杂,IDW模型的性能越低,而实际的工业数据集往往具有更复杂的空间结构。为了解决这个问题,提出了一个基于深入强化学习网络的空间预测和建模的新框架。在拟议的框架中,通过重复Q网络中的状态值,并提高了深度强化学习网络的收敛速率和稳定性,从而增强了状态和行动之间的内部关系。然后,使用改进的深钢筋学习网络用于搜索和学习逆距离加权模型中每个样本点的超参数。这些超参数可以在某种程度上反映当前工业数据集的空间结构。然后,基于学习的超参数构建超参数的空间分布。每个插值点从高参数空间分布中获得相应的超参数,并将它们带入经典的IDW模型以进行预测,从而实现了差异空间预测和建模。仿真结果表明,所提出的框架适用于具有复杂空间结构特征的实际工业数据集,并且在空间预测中比当前的IDW模型更准确。

Inverse Distance Weighted models (IDW) have been widely used for predicting and modeling multidimensional space in multimodal industrial processes. However, the more complex the structure of multidimensional space, the lower the performance of IDW models, and real industrial datasets tend to have more complex spatial structure. To solve this problem, a new framework for spatial prediction and modeling based on deep reinforcement learning network is proposed. In the proposed framework, the internal relationship between state and action is enhanced by reusing the state values in the Q network, and the convergence rate and stability of the deep reinforcement learning network are improved. The improved deep reinforcement learning network is then used to search for and learn the hyperparameters of each sample point in the inverse distance weighted model. These hyperparameters can reflect the spatial structure of the current industrial dataset to some extent. Then a spatial distribution of hyperparameters is constructed based on the learned hyperparameters. Each interpolation point obtains corresponding hyperparameters from the hyperparametric spatial distribution and brings them into the classical IDW models for prediction, thus achieving differential spatial prediction and modeling. The simulation results show that the proposed framework is suitable for real industrial datasets with complex spatial structure characteristics and is more accurate than current IDW models in spatial prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源