论文标题
房地产市场预测问题的机器学习方法:案例研究
Machine Learning Approaches to Real Estate Market Prediction Problem: A Case Study
论文作者
论文摘要
鉴于交易行为者的经济利益,包括政府,房地产经销商和买卖房地产的公众,出售价格是形成的。产生准确的房地产价格预测模型是房地产市场的主要挑战。这项工作从2010年1月到2019年11月,使用十年的实际数据集开发了房地产价格分类模型。房地产数据集可公开使用,并从佛罗里达州的Volusia County县房地产评估师中取回。此外,在预测模型中收集并使用了社会经济因素,例如国内生产总值,消费者价格指数,生产商价格指数,房价指数和有效的联邦资金利率。为了解决此案例研究问题,采用了几种强大的机器学习算法,即逻辑回归,随机森林,投票分类器和XGBoost。它们与目标编码集成在一起,以开发准确的物业销售价格预测模型,目的是预测收盘价是否大于或小于上市销售价格。为了评估模型的性能,确定了模型的准确性,精度,召回,分类F1分数以及模型的错误率。在四种研究的机器学习算法中,XGBoost与其他模型相比,XGBOOST可提供卓越的结果和鲁棒性。开发的模型可以促进房地产投资者,抵押贷款人和金融机构做出更好的明智决定。
Home sale prices are formed given the transaction actors economic interests, which include government, real estate dealers, and the general public who buy or sell properties. Generating an accurate property price prediction model is a major challenge for the real estate market. This work develops a property price classification model using a ten year actual dataset, from January 2010 to November 2019. The real estate dataset is publicly available and was retrieved from Volusia County Property Appraiser of Florida website. In addition, socio-economic factors such as Gross Domestic Product, Consumer Price Index, Producer Price Index, House Price Index, and Effective Federal Funds Rate are collected and used in the prediction model. To solve this case study problem, several powerful machine learning algorithms, namely, Logistic Regression, Random Forest, Voting Classifier, and XGBoost, are employed. They are integrated with target encoding to develop an accurate property sale price prediction model with the aim to predict whether the closing sale price is greater than or less than the listing sale price. To assess the performance of the models, the accuracy, precision, recall, classification F1 score, and error rate of the models are determined. Among the four studied machine learning algorithms, XGBoost delivers superior results and robustness of the model compared to other models. The developed model can facilitate real estate investors, mortgage lenders and financial institutions to make better informed decisions.