论文标题

关于紧急系统质量功能:积聚与碎片之间的竞争

On the emergent System Mass Function: the contest between accretion and fragmentation

论文作者

Clark, Paul C., Whitworth, Anthony P.

论文摘要

我们提出了一个新的模型,以实现星团系统质量函数(SMF)的演变。该模型涉及湍流碎片和竞争积聚。湍流碎片创造了低质量种子原始系统(即单一和多质恒定的系统)。这些低质量种子原始系统中的一些通过竞争积聚生长,以产生SMF的高质量幂律尾巴。湍流碎片相对效率低下,从某种意义上说,低质量种子原始系统的创建只会消耗分数,$ \ sim 23 \%$(最多最多$ \ sim 50 \%\%$),可用于恒星形成。剩余的质量被竞争积聚所消耗。如果在原始系统上的积聚率与其质量($ dm/dt \ propto m $)大致成正比,则SMF在带有Salpeter Slope($ \ sim -2.3 $)的高质量的幂律尾巴上。如果质量加速的供应速率,原始系统形成的速率也会加速,那么在许多群集中似乎都可以观察到。但是,即使质量的供应速率降低或停止然后恢复,SMF也同源地演变,保持相同的整体形状,而高质量的幂律尾巴只会扩展到更高的质量,直到气体的供应完全消耗为止。如果种子原始系统具有大约对数正态质量分布,中位质量$ \ sim 0.11 {\ rm m} _ {_ \ odot} $和震动标准偏差$σ__{\ log_ {\ log_ {sim {m/sim po),则可以非常准确地复制Chabrier SMF。 0.47 $)。

We propose a new model for the evolution of a star cluster's System Mass Function (SMF). The model involves both turbulent fragmentation and competitive accretion. Turbulent fragmentation creates low-mass seed proto-systems (i.e. single and multiple protostars). Some of these low-mass seed proto-systems then grow by competitive accretion to produce the high-mass power-law tail of the SMF. Turbulent fragmentation is relatively inefficient, in the sense that the creation of low-mass seed proto-systems only consumes a fraction, $\sim 23\%$ (at most $\sim 50\%$), of the mass available for star formation. The remaining mass is consumed by competitive accretion. Provided the accretion rate onto a proto-system is approximately proportional to its mass ($dm/dt \propto m$), the SMF develops a power-law tail at high masses with the Salpeter slope ($\sim -2.3$). If the rate of supply of mass accelerates, the rate of proto-system formation also accelerates, as appears to be observed in many clusters. However, even if the rate of supply of mass decreases, or ceases and then resumes, the SMF evolves homologously, retaining the same overall shape, and the high-mass power-law tail simply extends to ever higher masses until the supply of gas runs out completely. The Chabrier SMF can be reproduced very accurately if the seed proto-systems have an approximately log-normal mass distribution with median mass $\sim 0.11 {\rm M}_{_\odot}$ and logarithmic standard deviation $σ_{\log_{10}(M/{\rm M}_\odot)}\sim 0.47$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源