论文标题
$ H $光谱的核预测没有核错误
Nuclear Predictions for $H$ Spectroscopy without Nuclear Errors
论文作者
论文摘要
核结构效应通常会提供不可约理论的误差,可防止使用精确原子测量来检验基本理论。我们将新开发的有效现场理论工具应用于氢原子,并使用它们来表明(对于当前测量的准确性)所有核有限大小的效果(例如,电荷半径,修饰矩,核极化,后退校正,Zemach Moments {\ IT})仅通过两个参数构成两个参数,独立于任何核代表。由于在氢气中可用于两个以上的原子水平的精确测量值,因此该观察结果允许使用精度原子测量来消除与核基质元素相关的理论误差。我们将这种推理应用于七个原子测量值,其实验精度小于10 kHz,以提供预测核大小效应的预测,其理论准确性不受核模型不确定性的影响,因此小于1 kHz。此外,随着原子测量的改善,这些预测的准确性可以提高,从而使精确的基本测试远低于核理论的“不可约”误差底。
Nuclear-structure effects often provide an irreducible theory error that prevents using precision atomic measurements to test fundamental theory. We apply newly developed effective field theory tools to Hydrogen atoms, and use them to show that (to the accuracy of present measurements) all nuclear finite-size effects (e.g. the charge radius, Friar moments, nuclear polarizabilities, recoil corrections, Zemach moments {\it etc.}) only enter into atomic energies through exactly two parameters, independent of any nuclear-modelling uncertainties. Since precise measurements are available for more than two atomic levels in Hydrogen, this observation allows the use of precision atomic measurements to eliminate the theory error associated with nuclear matrix elements. We apply this reasoning to the seven atomic measurements whose experimental accuracy is smaller than 10 kHz to provide predictions for nuclear-size effects whose theoretical accuracy is not subject to nuclear-modelling uncertainties and so are much smaller than 1 kHz. Furthermore, the accuracy of these predictions can improve as atomic measurements improve, allowing precision fundamental tests to become possible well below the 'irreducible' error floor of nuclear theory.