论文标题

用于M/EEG源分离的噪声模型的光谱独立组件分析

Spectral independent component analysis with noise modeling for M/EEG source separation

论文作者

Ablin, Pierre, Cardoso, Jean-François, Gramfort, Alexandre

论文摘要

背景:独立组件分析(ICA)是探索和降解脑电图(EEG)或磁脑电图(MEG)信号的广泛工具。 ICA在最常见的公式中假设信号基质是假定非高斯的独立源的无噪声线性混合物。一个限制是,它强制估计传感器和依赖有害的PCA步骤的源。 方法:我们介绍光谱匹配的ICA(SMICA)模型。信号被建模为被添加噪声损坏的独立源的线性混合,其中源和噪声是固定的高斯时间序列。得益于高斯假设,负模样的表达式是一个简单的表达,作为信号的经验光谱协方差矩阵与模型预测的经验光谱协方差矩阵之间的差异之和。然后可以通过预期最大化(EM)算法来估计模型参数。 结果:Phantom MEG数据集的实验表明,当偶极振幅较低时,SMICA可以比通常的ICA算法更精确地恢复偶极子位置或Maxwell过滤。 EEG数据集上的实验表明,SMICA识别一个源子空间,该子空间包含源具有较少成对互信息的源,并且可以通过在头皮上的单个偶极子的投影来更好地解释。 与现有方法的比较:无噪声的ICA模型在源头少于传感器少时会导致退化的可能性,而Smica成功而无需诉诸于先前的尺寸降低。 结论:Smica是基于非高斯假设的其他无噪声ICA模型的有前途的替代方法。

Background: Independent Component Analysis (ICA) is a widespread tool for exploration and denoising of electroencephalography (EEG) or magnetoencephalography (MEG) signals. In its most common formulation, ICA assumes that the signal matrix is a noiseless linear mixture of independent sources that are assumed non-Gaussian. A limitation is that it enforces to estimate as many sources as sensors or to rely on a detrimental PCA step. Methods: We present the Spectral Matching ICA (SMICA) model. Signals are modelled as a linear mixing of independent sources corrupted by additive noise, where sources and the noise are stationary Gaussian time series. Thanks to the Gaussian assumption, the negative log-likelihood has a simple expression as a sum of divergences between the empirical spectral covariance matrices of the signals and those predicted by the model. The model parameters can then be estimated by the expectation-maximization (EM) algorithm. Results: Experiments on phantom MEG datasets show that SMICA can recover dipole locations more precisely than usual ICA algorithms or Maxwell filtering when the dipole amplitude is low. Experiments on EEG datasets show that SMICA identifies a source subspace which contains sources that have less pairwise mutual information, and are better explained by the projection of a single dipole on the scalp. Comparison with existing methods: Noiseless ICA models lead to degenerate likelihood when there are fewer sources than sensors, while SMICA succeeds without resorting to prior dimension reduction. Conclusions: SMICA is a promising alternative to other noiseless ICA models based on non-Gaussian assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源