论文标题

Trappist-1行星的岩浆海洋演变

Magma ocean evolution of the TRAPPIST-1 planets

论文作者

Barth, Patrick, Carone, Ludmila, Barnes, Rory, Noack, Lena, Mollière, Paul, Henning, Thomas

论文摘要

最近对潜在可居住行星Trappist-1 E,F和G的观察结果表明,即使宿主星的活性应促进大气中的快速逃生,它们可能具有大量的水质量分数。这些过程可以将水照射,产生游离氧气并可能使行星干燥。行星形成后,它们的披风可能完全熔化,挥发物溶解并从熔体中溶解。为了理解这些行星并为将来的观察做准备,必须理解这些世界的岩浆海洋阶段。为了模拟这些行星,我们结合了现有的恒星进化,大气逃逸,潮汐加热,放射性加热,岩浆海洋冷却,行星辐射和水氧 - 铁地球化学的模型。我们提出了一种多功能的岩浆海洋演化模型Magmoc,对岩石上的GJ 1132b和Early Earth进行了验证。我们在一系列潮汐和放射性加热速率以及1至100泥土之间的一系列潮汐加热率以及1到100个地球海洋之间的耦合岩浆海洋 - 大气进化。我们还重新分析了这些行星的结构,并发现它们的水质量分数分别为0-0.23、0.01-0.21和0.11-0.24,对于行星E,F和G。我们的模型对地幔固化时的trappist-1大气的水和氧含量并未做出强烈的预测。相比之下,该模型预测Trappist-1 F和G在该阶段具有少量的氧气的蒸汽气氛。对于我们研究的所有行星,我们发现只有3-5%的初始水将在岩浆海洋固化后锁在地幔中。

Recent observations of the potentially habitable planets TRAPPIST-1 e, f, and g suggest that they possess large water mass fractions of possibly several tens of wt% of water, even though the host star's activity should drive rapid atmospheric escape. These processes can photolyze water, generating free oxygen and possibly desiccating the planet. After the planets formed, their mantles were likely completely molten with volatiles dissolving and exsolving from the melt. In order to understand these planets and prepare for future observations, the magma ocean phase of these worlds must be understood. To simulate these planets, we have combined existing models of stellar evolution, atmospheric escape, tidal heating, radiogenic heating, magma ocean cooling, planetary radiation, and water-oxygen-iron geochemistry. We present MagmOc, a versatile magma ocean evolution model, validated against the rocky Super-Earth GJ 1132b and early Earth. We simulate the coupled magma ocean-atmospheric evolution of TRAPPIST-1 e, f, and g for a range of tidal and radiogenic heating rates, as well as initial water contents between 1 and 100 Earth oceans. We also reanalyze the structures of these planets and find they have water mass fractions of 0-0.23, 0.01-0.21, and 0.11-0.24 for planets e, f, and g, respectively. Our model does not make a strong prediction about the water and oxygen content of the atmosphere of TRAPPIST-1 e at the time of mantle solidification. In contrast, the model predicts that TRAPPIST-1 f and g would have a thick steam atmosphere with a small amount of oxygen at that stage. For all planets that we investigated, we find that only 3-5% of the initial water will be locked in the mantle after the magma ocean solidified.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源