论文标题
双重反映的BSDE具有随机二次生长:周围可预测的障碍
Doubly Reflected BSDEs With Stochastic Quadratic Growth: Around The Predictable Obstacles
论文作者
论文摘要
我们证明存在最大(和最小)的解决方案,用于一维的义大度双重反映后向后的随机微分方程(简称RBSDE),并具有不规则的障碍和随机二次增长,为此,解决方案$ y $必须在两个RCLL屏障之间保持$ l $和$ u $ $ $ $ $ $ [0; [0; [0; t [$及其左限$ y _- $必须分别保持在两个可预测的障碍$ l $和$ u $ y $] 0;] 0; t] $。这是在没有假设任何$ p $可整合性条件的情况下完成的,并且在输入数据上的假设较弱的情况下完成。特别是,当终端条件$ξ$仅为$ {\ cal f} _t- $可衡量时,我们为这种RBSDE构建了最大解决方案,而相对于可变$ z $,驱动程序$ f $与可变$ y $和随机二次增长相对于变量$ y $和随机增长的一般增长是连续的。我们的结果基于一种(广义)惩罚方法。这种方法使我们可以找到与原始RBSDE相同的形式,在该形式中,其解决方案必须在两个新的RCLL之间保留反映障碍物$ \ overline {y} $和$ \ usepline {y} $,这是大致说明的,这是由假定在系数上假定的主导条件驱动的惩罚方程的极限。还给出了我们初始RBSDE的标准和同等形式,以及解决方案$ y $作为某些给定可预测过程$ l $的广义的Snell信封的特征。
We prove the existence of maximal (and minimal) solution for one-dimensional generalized doubly reflected backward stochastic differential equation (RBSDE for short) with irregular barriers and stochastic quadratic growth, for which the solution $Y$ has to remain between two rcll barriers $L$ and $U$ on $[0; T[$, and its left limit $Y_-$ has to stay respectively above and below two predictable barriers $l$ and $u$ on $]0; T]$. This is done without assuming any $P$-integrability conditions and under weaker assumptions on the input data. In particular, we construct a maximal solution for such a RBSDE when the terminal condition $ξ$ is only ${\cal F}_T-$measurable and the driver $f$ is continuous with general growth with respect to the variable $y$ and stochastic quadratic growth with respect to the variable $z$. Our result is based on a (generalized) penalization method. This method allow us find an equivalent form to our original RBSDE where its solution has to remain between two new rcll reflecting barriers $\overline{Y}$ and $\underline{Y}$ which are, roughly speaking, the limit of the penalizing equations driven by the dominating conditions assumed on the coefficients. A standard and equivalent form to our initial RBSDE as well as a characterization of the solution $Y$ as a generalized Snell envelope of some given predictable process $l$ are also given.