论文标题

无环,恒星和注入性着色:无H-F-FRAPH的复杂性图片

Acyclic, Star and Injective Colouring: A Complexity Picture for H-Free Graphs

论文作者

Bok, Jan, Jedlickova, Nikola, Martin, Barnaby, Ochem, Pascal, Paulusma, Daniel, Smith, Siani

论文摘要

A(适当的)着色是无环,星形或注入性的,如果任何两种颜色类别分别引起森林,星森林或边缘的脱节结合。因此,每种注射性着色都是星形着色,每种星星的着色都是无环着色。相应的决策问题是无环着色,星形着色和注入性着色(最后一个问题也称为$ L(1,1)$ - 标签)。颜色的经典复杂性结果是$ h $ free图的众所周知的二分法(如果不包含$ h $作为诱导子绘图的$ h $ free图)。相比之下,尽管多年来出现了许多算法和结构性结果,但仍未对无环着色,恒星着色和注入性着色的计算复杂性进行系统的研究。我们进行了一项研究,并在$ h $ free图上提供了无环着色,星形着色和注射着色的几乎完全复杂性分类(对于每个问题,我们都有一个开放式案例)。此外,如果固定颜色$ k $的颜色数量,即不是输入的一部分,我们会提供完全的复杂性分类。从我们的研究中,对于固定$ k $的固定,这三个问题以相同的方式行事,但是如果$ k $是输入的一部分,这是不再正确的。为了获得我们的几个结果,我们证明了更强的复杂性结果,特别是涉及图的周长和多编码的线图等级。

A (proper) colouring is acyclic, star, or injective if any two colour classes induce a forest, star forest or disjoint union of vertices and edges, respectively. Hence, every injective colouring is a star colouring and every star colouring is an acyclic colouring. The corresponding decision problems are Acyclic Colouring, Star Colouring and Injective Colouring (the last problem is also known as $L(1,1)$-Labelling). A classical complexity result on Colouring is a well-known dichotomy for $H$-free graphs (a graph is $H$-free if it does not contain $H$ as an induced subgraph). In contrast, there is no systematic study into the computational complexity of Acyclic Colouring, Star Colouring and Injective Colouring despite numerous algorithmic and structural results that have appeared over the years. We perform such a study and give almost complete complexity classifications for Acyclic Colouring, Star Colouring and Injective Colouring on $H$-free graphs (for each of the problems, we have one open case). Moreover, we give full complexity classifications if the number of colours $k$ is fixed, that is, not part of the input. From our study it follows that for fixed $k$ the three problems behave in the same way, but this is no longer true if $k$ is part of the input. To obtain several of our results we prove stronger complexity results that in particular involve the girth of a graph and the class of line graphs of multigraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源