论文标题

信仰行为树的任务计划

Task Planning with Belief Behavior Trees

论文作者

Safronov, Evgenii, Colledanchise, Michele, Natale, Lorenzo

论文摘要

在本文中,我们提出了信仰行为树(BBT),这是行为树(BTS)的扩展,该行为树(BTS)允许自动创建一个在可观察到的环境中控制机器人的策略。我们扩展了BT的语义,以说明影响BT条件和动作节点的不确定性。根据最近提出的BTS计划策略,该树是合成的:从一组目标条件下,我们迭代选择一个目标,并找到满足该目标的动作或一般的子树。此类行动可能具有不存在的前提条件。对于这些先决条件,我们以相同的方式找到了一个动作或子树。我们通过在计划者中包括有目的的动作来扩展这种方法,以减少影响BT中条件节点值的不确定性(例如,打开灯光以具有更好的照明条件)。我们证明了BBT允许以非确定性结果进行行动的任务计划。我们在真正的机器人场景中对我们的方法进行实验验证,并在模拟的情况下(为了重现性)。

In this paper, we propose Belief Behavior Trees (BBTs), an extension to Behavior Trees (BTs) that allows to automatically create a policy that controls a robot in partially observable environments. We extend the semantic of BTs to account for the uncertainty that affects both the conditions and action nodes of the BT. The tree gets synthesized following a planning strategy for BTs proposed recently: from a set of goal conditions we iteratively select a goal and find the action, or in general the subtree, that satisfies it. Such action may have preconditions that do not hold. For those preconditions, we find an action or subtree in the same fashion. We extend this approach by including, in the planner, actions that have the purpose to reduce the uncertainty that affects the value of a condition node in the BT (for example, turning on the lights to have better lighting conditions). We demonstrate that BBTs allows task planning with non-deterministic outcomes for actions. We provide experimental validation of our approach in a real robotic scenario and - for sake of reproducibility - in a simulated one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源