论文标题

Q-Moment措施和应用:通过最佳运输的新方法

q-Moment Measures and Applications: A New Approach via Optimal Transport

论文作者

Khanh, Huynh, Santambrogio, Filippo

论文摘要

2017年,Bo'az Klartag获得了有关椭圆类仿射半球存在差异几何形状的新结果。在他的方法中,一个表面与每个凸功能$φ$:r^n $ \ rightarrow $(0, +$ \ infty $)以及表面成为仿射半球的条件涉及$φ$的2级量度(Q-Moment的特定案例,即$ \ nabla $ $ \ nabla $φ或# ($φ$^{ - (n+q)})用于q> 0)。在克拉塔格(Klartag)的论文中,通过一种差异方法研究了Q-Moment措施,该方法需要最大程度地减少凸函数之间的功能,该功能是使用Borell-Borell-Brascamp-lieb不平等的研究。在本文中,我们通过最佳运输方法攻击了相同的问题,因为凸函数$φ$是坎多维奇的潜力(就像以前的论文中已经完成了时刻量度一样)。在这种新方法中,变异问题成为局部功能和概率度量中的运输成本的最小化,而优化器证明是$ρ$ = $ = $φ$^{ - (n+q)}的形式。

In 2017, Bo'az Klartag obtained a new result in differential geometry on the existence of affine hemisphere of elliptic type. In his approach, a surface is associated with every a convex function $Φ$ : R^n $\rightarrow$ (0, +$\infty$) and the condition for the surface to be an affine hemisphere involves the 2-moment measure of $Φ$ (a particular case of q-moment measures, i.e measures of the form ($\nabla$$Φ$) \# ($Φ$^{--(n+q)}) for q > 0). In Klartag's paper, q-moment measures are studied through a variational method requiring to minimize a functional among convex functions, which is studied using the Borell-Brascamp-Lieb inequality. In this paper, we attack the same problem through an optimal transport approach, since the convex function $Φ$ is a Kantorovich potential (as already done for moment measures in a previous paper). The variational problem in this new approach becomes the minimization of a local functional and a transport cost among probability measures and the optimizer turns out to be of the form $ρ$ = $Φ$^{--(n+q)}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源