论文标题

$ 2 $ -LAYER $ K $ -PLANAR图:密度,交叉引理,关系和路径宽

$2$-Layer $k$-Planar Graphs: Density, Crossing Lemma, Relationships, and Pathwidth

论文作者

Angelini, Patrizio, Da Lozzo, Giordano, Förster, Henry, Schneck, Thomas

论文摘要

$ 2 $ - 层绘图模型是一个可视化二分图的范式。在此模型下,已经研究了几个平面图类别。但是,令人惊讶的是,在这种情况下,仅考虑$ k = 1 $的$ k $ - 平面图的基本类别。我们提供了一些贡献,可以解决文献中的这一差距。首先,我们显示$ 2 $ -LAYER $ K $ -PLANAR图的$ K \ in \ in \ {2,3,4,5 \} $的$ 2 $ -LAYER $ K $ -PLANAR图的紧密密度界限。基于这些结果,我们为$ 2 $ layer $ k $ -planar图提供了一个交叉引理,这意味着通用密度限制为$ 2 $ -LAYER $ K $ -PLANAR图。我们证明,对于相应的下限结构,这一义务几乎是最佳的。最后,我们研究了$ k $ - planarity和$ h $ quasiplanarity在$ 2 $ -Layer型号中的关系,并表明$ 2 $ -LAYER $ K $ -PLANAR图最多具有$ K+1 $的路径。

The $2$-layer drawing model is a well-established paradigm to visualize bipartite graphs. Several beyond-planar graph classes have been studied under this model. Surprisingly, however, the fundamental class of $k$-planar graphs has been considered only for $k=1$ in this context. We provide several contributions that address this gap in the literature. First, we show tight density bounds for the classes of $2$-layer $k$-planar graphs with $k\in\{2,3,4,5\}$. Based on these results, we provide a Crossing Lemma for $2$-layer $k$-planar graphs, which then implies a general density bound for $2$-layer $k$-planar graphs. We prove this bound to be almost optimal with a corresponding lower bound construction. Finally, we study relationships between $k$-planarity and $h$-quasiplanarity in the $2$-layer model and show that $2$-layer $k$-planar graphs have pathwidth at most $k+1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源