论文标题

用于视觉本地化的学习特征的域适应

Domain Adaptation of Learned Features for Visual Localization

论文作者

Baik, Sungyong, Kim, Hyo Jin, Shen, Tianwei, Ilg, Eddy, Lee, Kyoung Mu, Sweeney, Chris

论文摘要

我们解决了不断变化的条件(例如一天中的时间,天气和季节)的视觉定位问题。基于深度神经网络的最新学习的本地功能表现出优于经典手工制作的本地特征的表现。但是,在现实情况下,训练和目标图像之间通常存在较大的域间隙,这可能会大大降低本地化精度。尽管现有方法利用大量数据来解决该问题,但我们提出了一种新颖而实用的方法,其中只需要几个示例来减少域间隙。特别是,我们为学习的本地特征提出了一些射击域的适应框架,以涉及视觉定位的不同条件。实验结果证明了比基线的表现优越,同时使用了来自目标域的少数训练示例。

We tackle the problem of visual localization under changing conditions, such as time of day, weather, and seasons. Recent learned local features based on deep neural networks have shown superior performance over classical hand-crafted local features. However, in a real-world scenario, there often exists a large domain gap between training and target images, which can significantly degrade the localization accuracy. While existing methods utilize a large amount of data to tackle the problem, we present a novel and practical approach, where only a few examples are needed to reduce the domain gap. In particular, we propose a few-shot domain adaptation framework for learned local features that deals with varying conditions in visual localization. The experimental results demonstrate the superior performance over baselines, while using a scarce number of training examples from the target domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源