论文标题
着色全天候夜间卫星图像:比较几种机器学习方法的性能
Coloring Panchromatic Nighttime Satellite Images: Comparing the Performance of Several Machine Learning Methods
论文作者
论文摘要
从地面发出并从空间可见的夜晚光(alan)标志着人类在地球上的存在。自Suomi国家极地合伙卫星推出以来,可见红外成像辐射仪套件日/夜乐队(VIIRS/DNB)在船上,全球夜间图像已大大改善;但是,它们仍然是全天乐。尽管也有多光谱图像,但它们是商业或免费的,但零星。在本文中,我们使用了几种机器学习技术,例如线性,内核,随机森林回归和弹性地图方法,将Panchromical Viirs/DBN转换为红绿色蓝色(RGB)图像。为了验证拟议的方法,我们分析了全球八个城市地区的RGB图像。我们将从ISS照片获得的RGB值链接到Panchronic Alan强度,其像素方面的差异以及几种土地使用类型代理。每个数据集用于模型培训,而其他数据集则用于模型验证。分析表明,模型估计的RGB图像与来自ISS数据库的原始RGB图像的高度对应关系。然而,基于线性,内核和随机森林回归的估计值提供了更好的相关性,对比度相似性和较低的WMSES水平,而使用弹性地图方法生成的RGB图像则提供了更高的预测一致性。
Artificial light-at-night (ALAN), emitted from the ground and visible from space, marks human presence on Earth. Since the launch of the Suomi National Polar Partnership satellite with the Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS/DNB) onboard, global nighttime images have significantly improved; however, they remained panchromatic. Although multispectral images are also available, they are either commercial or free of charge, but sporadic. In this paper, we use several machine learning techniques, such as linear, kernel, random forest regressions, and elastic map approach, to transform panchromatic VIIRS/DBN into Red Green Blue (RGB) images. To validate the proposed approach, we analyze RGB images for eight urban areas worldwide. We link RGB values, obtained from ISS photographs, to panchromatic ALAN intensities, their pixel-wise differences, and several land-use type proxies. Each dataset is used for model training, while other datasets are used for the model validation. The analysis shows that model-estimated RGB images demonstrate a high degree of correspondence with the original RGB images from the ISS database. Yet, estimates, based on linear, kernel and random forest regressions, provide better correlations, contrast similarity and lower WMSEs levels, while RGB images, generated using elastic map approach, provide higher consistency of predictions.