论文标题

nilpotent群的非交通,非生成图

The non-commuting, non-generating graph of a nilpotent group

论文作者

Cameron, Peter J., Freedman, Saul D., Roney-Dougal, Colva M.

论文摘要

对于nilpotent $ g $,令$ξ(g)$是$ g $的生成图的补充与$ g $的通勤图之间的区别,其顶点对应于$ g $的中央元素。也就是说,$ξ(g)$具有顶点set $ g \ setminus z(g)$,当且仅当它们不上下班并且不产生$ g $时,有两个顶点相邻。此外,令$ξ^+(g)$为$ξ(g)$的子图,其非分离顶点引起的。我们表明,如果$ξ(g)$具有边缘,则$ξ^+(g)$与直径$ 2 $或$ 3 $连接,而直径$ 3 $ case中的$ξ(g)=ξ^+(g)$。在无限的情况下,我们的结果更普遍地适用于所有最大亚组正常的组。当$ g $有限时,我们会更详细地探索$ g $和$ξ(g)$的结构之间的关系。

For a nilpotent group $G$, let $Ξ(G)$ be the difference between the complement of the generating graph of $G$ and the commuting graph of $G$, with vertices corresponding to central elements of $G$ removed. That is, $Ξ(G)$ has vertex set $G \setminus Z(G)$, with two vertices adjacent if and only if they do not commute and do not generate $G$. Additionally, let $Ξ^+(G)$ be the subgraph of $Ξ(G)$ induced by its non-isolated vertices. We show that if $Ξ(G)$ has an edge, then $Ξ^+(G)$ is connected with diameter $2$ or $3$, with $Ξ(G) = Ξ^+(G)$ in the diameter $3$ case. In the infinite case, our results apply more generally, to any group with every maximal subgroup normal. When $G$ is finite, we explore the relationship between the structures of $G$ and $Ξ(G)$ in more detail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源