论文标题
在青蛙模型中,在$ d $ ary树上复发的最小漂移
On the minimal drift for recurrence in the frog model on $d$-ary trees
论文作者
论文摘要
我们研究了$ d $ - yr-ary tree $ p \ in [0,1] $ in [0,1] $上的一个每点青蛙模型$ \ text {fm}(d,p)$的复发,这决定了青蛙随机步行的偏见。我们对最小的漂移$ p_ {d} $感兴趣,因此青蛙模型经常性。将耦合参数与生成功能技术一起使用,我们证明,对于所有$ d \ ge 2 $,$ p_ {d} \ le 1/3 $,这是最佳的通用上限。
We study the recurrence of one-per-site frog model $\text{FM}(d, p)$ on a $d$-ary tree with drift parameter $p\in [0,1]$, which determines the bias of frogs' random walks. We are interested in the minimal drift $p_{d}$ so that the frog model is recurrent. Using a coupling argument together with a generating function technique, we prove that for all $d \ge 2$, $p_{d}\le 1/3$, which is the optimal universal upper bound.