论文标题

关于深击的归因

On Attribution of Deepfakes

论文作者

Zhang, Baiwu, Zhou, Jin Peng, Shumailov, Ilia, Papernot, Nicolas

论文摘要

生成建模的进展,尤其是生成的对抗网络,使得有效地合成和更改媒体成为可能。恶意的人现在依靠这些机器生成的媒体或深层媒体来操纵社会话语。为了确保媒体的真实性,现有的研究集中在深层检测上。然而,用于生成建模的框架的对抗性表明,检测深击的进展将使更现实的深层产生。因此,毫不奇怪的是,生成模型的开发人员受到处理误导运动的利益相关者的审查。同时,生成模型具有许多积极的应用。因此,明确需要开发工具,以确保生成建模的透明使用,同时最大程度地减少恶意应用程序造成的伤害。 我们的技术优化了每个生成模型的熵来源,以将深层捕获归因于其中一个模型。我们在面部合成的开创性示例上评估了我们的方法,表明我们的方法达到了97.62%的归因精度,并且对扰动和对抗性示例的敏感性较低。我们讨论了工作的道德含义,确定可以在何处使用我们的技术,并强调说,对于生成建模的更透明和道德使用,需要一个更有意义的立法框架。最后,我们认为模型开发人员应该能够声称可否认的性能并提出第二个框架来做到这一点 - 这使模型开发人员能够产生证据表明他们没有产生媒体,表明他们被指控生产了。

Progress in generative modelling, especially generative adversarial networks, have made it possible to efficiently synthesize and alter media at scale. Malicious individuals now rely on these machine-generated media, or deepfakes, to manipulate social discourse. In order to ensure media authenticity, existing research is focused on deepfake detection. Yet, the adversarial nature of frameworks used for generative modeling suggests that progress towards detecting deepfakes will enable more realistic deepfake generation. Therefore, it comes at no surprise that developers of generative models are under the scrutiny of stakeholders dealing with misinformation campaigns. At the same time, generative models have a lot of positive applications. As such, there is a clear need to develop tools that ensure the transparent use of generative modeling, while minimizing the harm caused by malicious applications. Our technique optimizes over the source of entropy of each generative model to probabilistically attribute a deepfake to one of the models. We evaluate our method on the seminal example of face synthesis, demonstrating that our approach achieves 97.62% attribution accuracy, and is less sensitive to perturbations and adversarial examples. We discuss the ethical implications of our work, identify where our technique can be used, and highlight that a more meaningful legislative framework is required for a more transparent and ethical use of generative modeling. Finally, we argue that model developers should be capable of claiming plausible deniability and propose a second framework to do so -- this allows a model developer to produce evidence that they did not produce media that they are being accused of having produced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源