论文标题

分析自动无偏学习的多元评分功能,以排名

Analysis of Multivariate Scoring Functions for Automatic Unbiased Learning to Rank

论文作者

Yang, Tao, Fang, Shikai, Li, Shibo, Wang, Yulan, Ai, Qingyao

论文摘要

利用有偏见的点击数据优化学习对系统的学习一直是信息检索的一种流行方法。由于点击数据通常是嘈杂的且有偏见的,因此已经提出了多种方法来构建无偏学习以进行排名(ULTR)算法,以学习无偏的排名模型。其中,由于其出色的性能和实践中的部署成本较低,因此,自动公正学习排名(AUTOULTR)算法,这些算法(即具有无偏行的倾向模型),其偏见模型(即倾向模型)受到了很大的关注。尽管在理论和算法设计方面存在差异,但现有的对ULT的研究通常使用Uni-Axariate排名函数来对每个文档进行评分或独立结果。另一方面,在上下文感知到的学习对象模型的最新进展表明,多变量评分功能将多个文档读取多个文档并共同预测其排名得分,它比用人为nothot的相关性标签在排名中的Uni-Variate排名函数更强大。但是,这种出色的性能是否会在嘈杂的数据中保持在ULTR中。在本文中,我们研究了理论上现有的多元评分函数和自动算法,并证明置换不变性是确定是否可以将上下文感知到的学习范围模型应用于现有自动图框架的关键因素。我们对两个大规模基准数据集进行合成点击的实验表明,具有置换不变的多元得分函数的自动模型显着胜过那些具有Uni-Variate评分函数和置换变化的多元分数得分功能的模型。

Leveraging biased click data for optimizing learning to rank systems has been a popular approach in information retrieval. Because click data is often noisy and biased, a variety of methods have been proposed to construct unbiased learning to rank (ULTR) algorithms for the learning of unbiased ranking models. Among them, automatic unbiased learning to rank (AutoULTR) algorithms that jointly learn user bias models (i.e., propensity models) with unbiased rankers have received a lot of attention due to their superior performance and low deployment cost in practice. Despite their differences in theories and algorithm design, existing studies on ULTR usually use uni-variate ranking functions to score each document or result independently. On the other hand, recent advances in context-aware learning-to-rank models have shown that multivariate scoring functions, which read multiple documents together and predict their ranking scores jointly, are more powerful than uni-variate ranking functions in ranking tasks with human-annotated relevance labels. Whether such superior performance would hold in ULTR with noisy data, however, is mostly unknown. In this paper, we investigate existing multivariate scoring functions and AutoULTR algorithms in theory and prove that permutation invariance is a crucial factor that determines whether a context-aware learning-to-rank model could be applied to existing AutoULTR framework. Our experiments with synthetic clicks on two large-scale benchmark datasets show that AutoULTR models with permutation-invariant multivariate scoring functions significantly outperform those with uni-variate scoring functions and permutation-variant multivariate scoring functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源