论文标题
从人类相互作用运动推断的对象属性和转移
Object Properties Inferring from and Transfer for Human Interaction Motions
论文作者
论文摘要
人类定期与周围物体互动。这种相互作用通常会导致人类与相互作用对象之间的运动密切相关。因此,我们问:“即使不看到相互作用的对象本身,也可以单独从骨骼运动中推断对象属性吗?”在本文中,我们提出了一种细粒的动作识别方法,该方法仅从人类的相互作用运动中就可以从人类的相互作用运动中推断出这种潜在对象的性质。这种推论使我们能够将运动从对象属性和将对象属性传输到给定运动。我们使用惯性运动捕获装置收集了表演演员的大量视频和3D骨骼运动。我们分析类似的动作,并学习它们之间的细微差异,以揭示相互作用对象的潜在特性。特别是,我们学会通过估计其权重,脆弱性或美味来识别相互作用的对象。我们的结果清楚地表明,相互作用运动和相互作用对象高度相关,实际上可以从3D骨架序列中推断出相对对象潜在特性,从而导致人类相互作用运动的新综合可能性。数据集将在http://vcc.szu.edu.cn/research/2020/it上找到。
Humans regularly interact with their surrounding objects. Such interactions often result in strongly correlated motion between humans and the interacting objects. We thus ask: "Is it possible to infer object properties from skeletal motion alone, even without seeing the interacting object itself?" In this paper, we present a fine-grained action recognition method that learns to infer such latent object properties from human interaction motion alone. This inference allows us to disentangle the motion from the object property and transfer object properties to a given motion. We collected a large number of videos and 3D skeletal motions of the performing actors using an inertial motion capture device. We analyze similar actions and learn subtle differences among them to reveal latent properties of the interacting objects. In particular, we learn to identify the interacting object, by estimating its weight, or its fragility or delicacy. Our results clearly demonstrate that the interaction motions and interacting objects are highly correlated and indeed relative object latent properties can be inferred from the 3D skeleton sequences alone, leading to new synthesis possibilities for human interaction motions. Dataset will be available at http://vcc.szu.edu.cn/research/2020/IT.