论文标题

斐波那契型和t(5)循环呈现组的双曲线组

Hyperbolic groups of Fibonacci type and T(5) cyclically presented groups

论文作者

Chinyere, Ihechukwu, Williams, Gerald

论文摘要

基于关于斐波那契类型组双曲线的先前结果,我们几乎对此类中(非元素)双曲线组进行了几乎完整的分类。我们无法确定两组的双曲线状态,即吉尔伯特·霍伊(Gilbert-Howie)组H(9,4),H(9,7)。我们表明,如果H(9,4)不含扭转,那么它不是双曲线。我们考虑t(5)循环呈现的组的类别,并对(非元素)双曲线组进行分类,并表明山雀替代方案。

Building on previous results concerning hyperbolicity of groups of Fibonacci type, we give an almost complete classification of the (non-elementary) hyperbolic groups within this class. We are unable to determine the hyperbolicity status of precisely two groups, namely the Gilbert-Howie groups H(9,4), H(9,7). We show that if H(9,4) is torsion-free then it is not hyperbolic. We consider the class of T(5) cyclically presented groups and classify the (non-elementary) hyperbolic groups and show that the Tits alternative holds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源