论文标题

使用超立方体组合缓存设计的高速缓存干扰管理,并减少了子包装和订单最佳的自由总和。

Cache-aided Interference Management using Hypercube Combinatorial Cache Design with Reduced Subpacketizations and Order Optimal Sum-Degrees of Freedom

论文作者

Zhang, Xiang, Woolsey, Nicholas, Ji, Mingyue

论文摘要

我们考虑一个由$ n $文件的库,$ k_t $ transmitters和$ k_r $接收器(用户)组成的库,该网络分别配备了$ M_T $和$ M_R $文件,并通过离散的时间添加性添加性白色高斯噪声(AWGN)频道连接。每个接收者从库请求一个任意文件。目的是在不知道接收器的请求和通信方案的情况下设计一个缓存位置,以使交付的自由度(sum-dof)最大化。 Naderializadeh {\ em等人}首先研究了这种具有单光传输的网络模型,他提出了一种实现$ \ min \ {\ frac {m_tk_t+k_rm_r} {n} {n} {n} {n},k_r \} $的计划,该计划达到$ \ min \ {\ frac {\ frac {\ frac {\ frac {\ frac {\ frac {\ frac {\ frac {该方案的最大限制之一是要求高子包装水平。本文试图设计新算法,以减少该网络中的文件子包装,而不会损害总和。特别是,我们提出了一种基于{\ em hypercube}的组合设计的预取编码和线性编码传递的新方法。所提出的方法以$ k_r m/n $的指数缩小子包装,并在$ \ frac {m_tk_t+k_rm_r} {n} \ leq k_r $时实现相同的单发总和。

We consider a cache-aided interference network which consists of a library of $N$ files, $K_T$ transmitters and $K_R$ receivers (users), each equipped with a local cache of size $M_T$ and $M_R$ files respectively, and connected via a discrete-time additive white Gaussian noise (AWGN) channel. Each receiver requests an arbitrary file from the library. The objective is to design a cache placement without knowing the receivers' requests and a communication scheme such that the sum Degrees of Freedom (sum-DoF) of the delivery is maximized. This network model with one-shot transmission was firstly investigated by Naderializadeh {\em et al.}, who proposed a scheme that achieves a one-shot sum-DoF of $\min\{\frac{M_TK_T+K_RM_R}{N}, K_R\}$, which is optimal within a constant of $2$. One of the biggest limitations of this scheme is the requirement of high subpacketization level. This paper attempts to design new algorithms to reduce the file subpacketization in such a network without hurting the sum-DoF. In particular, we propose a new approach for both prefetching and linearly coded delivery based on a combinatorial design called {\em hypercube}. The proposed approach reduces the subpacketization exponentially in terms of $K_R M/N$ and achieves the identical one-shot sum DoF when $\frac{M_TK_T+K_RM_R}{N} \leq K_R$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源