论文标题
代数的判别pfister形式,容量四
The discriminant Pfister form of an algebra with involution of capacity four
论文作者
论文摘要
在4度的中央简单代数上的正交或统一性,或在8度的中央简单代数上的符号差异,我们将代数的可分解性与涉及的pfister形式相关联。通过这种方式,我们为多种情况获得了一种已知可分解性标准的统一方法,并在特征2中获得了$ 8 $代数的符合性验证的新结果。
To an orthogonal or unitary involution on a central simple algebra of degree 4, or to a symplectic involution on a central simple algebra of degree 8, we associate a Pfister form that characterises the decomposability of the algebra with involution. In this way we obtain a unified approach to known decomposability criteria for several cases, and a new result for symplectic involutions on degree $8$ algebras in characteristic 2.