论文标题

基因座:一种使用均匀稀疏性的低级结构的大脑网络连通性矩阵的新型分解方法

LOCUS: A Novel Decomposition Method for Brain Network Connectivity Matrices using Low-rank Structure with Uniform Sparsity

论文作者

Wang, Yikai, Guo, Ying

论文摘要

以网络为导向的研究在许多科学领域都越来越流行。在神经科学研究中,基于成像的网络连接度量已成为理解大脑组织的关键,并有可能用作单个神经指纹。分析连通性矩阵的主要挑战,包括大脑网络的高维度,所观察到的连通性的潜在潜在来源以及导致虚假发现的大量大脑连接。在本文中,我们提出了一种新型的盲源分离方法,具有低级别结构和均匀的稀疏度(locus)作为网络测量的完全数据驱动的分解方法。与现有的方法相比,将连接性矩阵忽略大脑网络拓扑的方法相比,Locus使用低级结构实现了连通性矩阵的效率更高,准确的源分离。我们提出了一种新型基于角度的均匀稀疏性正则化,该稀疏性正则化表现出比现有的稀疏控制方法更好的性能。我们提出了一种高效的迭代节点旋转算法,该算法利用了目标函数的块多频率,以解决学习基因座的非convex优化问题。我们通过广泛的模拟研究说明了基因座的优势。位点应用于费城神经发育队列神经影像学研究揭示了使用现有方法发现的生物学上有见地的连通性特征。

Network-oriented research has been increasingly popular in many scientific areas. In neuroscience research, imaging-based network connectivity measures have become the key for understanding brain organizations, potentially serving as individual neural fingerprints. There are major challenges in analyzing connectivity matrices including the high dimensionality of brain networks, unknown latent sources underlying the observed connectivity, and the large number of brain connections leading to spurious findings. In this paper, we propose a novel blind source separation method with low-rank structure and uniform sparsity (LOCUS) as a fully data-driven decomposition method for network measures. Compared with the existing method that vectorizes connectivity matrices ignoring brain network topology, LOCUS achieves more efficient and accurate source separation for connectivity matrices using low-rank structure. We propose a novel angle-based uniform sparsity regularization that demonstrates better performance than the existing sparsity controls for low-rank tensor methods. We propose a highly efficient iterative Node-Rotation algorithm that exploits the block multi-convexity of the objective function to solve the non-convex optimization problem for learning LOCUS. We illustrate the advantage of LOCUS through extensive simulation studies. Application of LOCUS to Philadelphia Neurodevelopmental Cohort neuroimaging study reveals biologically insightful connectivity traits which are not found using the existing method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源