论文标题
潜在变量模型的信息框架的值
A Value of Information Framework for Latent Variable Models
论文作者
论文摘要
在本文中,信息(VOI)框架的一般价值是为潜在变量模型形式化的。特别是,源节点处的当前状态与目标节点上观察到的噪声测量值之间的相互信息用于评估信息值,这给出了当前状态不确定性降低的理论解释,因为我们对潜在过程进行了测量。此外,在此设置中获得了隐藏的Markov模型的VOI表达式。提供了数值结果,以显示VOI与传统信息时代(AOI)度量的关系,Markov的VOI和隐藏的Markov模型在特定情况下分析了潜在过程是Ornstein-uhlenbeck过程。尽管这项工作的贡献是理论上的,但提出的VOI框架对于设计及时但嘈杂的状态更新的无线系统是一般且有用的。
In this paper, a general value of information (VoI) framework is formalised for latent variable models. In particular, the mutual information between the current status at the source node and the observed noisy measurements at the destination node is used to evaluate the information value, which gives the theoretical interpretation of the reduction in uncertainty in the current status given that we have measurements of the latent process. Moreover, the VoI expression for a hidden Markov model is obtained in this setting. Numerical results are provided to show the relationship between the VoI and the traditional age of information (AoI) metric, and the VoI of Markov and hidden Markov models are analysed for the particular case when the latent process is an Ornstein-Uhlenbeck process. While the contributions of this work are theoretical, the proposed VoI framework is general and useful in designing wireless systems that support timely, but noisy, status updates in the physical world.