论文标题

Frank-Wolfe算法用于学习SVM型多类别分类器

Frank-Wolfe algorithm for learning SVM-type multi-category classifiers

论文作者

Tajima, Kenya, Hirohashi, Yoshihiro, Zara, Esmeraldo Ronnie Rey, Kato, Tsuyoshi

论文摘要

多类别支持向量机(MC-SVM)是最受欢迎的机器学习算法之一。 MC-SVM有很多变体,尽管为不同的学习机开发了不同的优化算法。在这项研究中,我们开发了一种新的优化算法,可以应用于许多MC-SVM变体。该算法基于弗兰克·沃尔夫(Frank-Wolfe)框架,该框架需要两个子问题,即指示查找和线路搜索,每次迭代。这项研究的贡献是,如果将Frank-Wolfe框架应用于双重问题,则两个子问题都有封闭式解决方案。此外,即使对于损失函数的莫罗信封也存在方向发现和线路搜索的封闭形式解决方案。我们使用几个大数据集来证明所提出的优化算法会迅速收敛,从而改善了模式识别性能。

Multi-category support vector machine (MC-SVM) is one of the most popular machine learning algorithms. There are lots of variants of MC-SVM, although different optimization algorithms were developed for different learning machines. In this study, we developed a new optimization algorithm that can be applied to many of MC-SVM variants. The algorithm is based on the Frank-Wolfe framework that requires two subproblems, direction finding and line search, in each iteration. The contribution of this study is the discovery that both subproblems have a closed form solution if the Frank-Wolfe framework is applied to the dual problem. Additionally, the closed form solutions on both for the direction finding and for the line search exist even for the Moreau envelopes of the loss functions. We use several large datasets to demonstrate that the proposed optimization algorithm converges rapidly and thereby improves the pattern recognition performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源