论文标题

沸点:促进几次学习的代表变化

BOIL: Towards Representation Change for Few-shot Learning

论文作者

Oh, Jaehoon, Yoo, Hyungjun, Kim, ChangHwan, Yun, Se-Young

论文摘要

模型不可知的元学习(MAML)是基于梯度的元学习算法中最具代表性的一种。 MAML使用来自元初始化点的内部更新来学习新任务,并通过外部更新学习元初始化参数。最近已经假设,代表重复使用几乎没有改变有效表示的变化,是通过MAML与表示变化相比,元定义模型的性能的主要因素,这会导致表示形式的重大变化。在这项研究中,我们调查了代表性变化的必要性,以实现几乎没有学习的最终目标,即解决域 - 不合Snostic任务。为此,我们提出了一种新型的元学习算法,称为BOIL(仅内部循环中的身体更新),该算法仅更新模型的身体(提取器),并在内部循环更新过程中冻结了头部(分类器)。煮沸杠杆表示的变化而不是代表重复使用。这是因为特征向量(表示)必须快速移动到相应的冷冻头向量。我们使用余弦相似性,CKA和无头的经验结果来可视化这一属性。在经验上,煮沸表现出对MAML的显着性能提高,尤其是在跨域任务上。结果表明,基于梯度的元学习方法的表示变化是关键组成部分。

Model Agnostic Meta-Learning (MAML) is one of the most representative of gradient-based meta-learning algorithms. MAML learns new tasks with a few data samples using inner updates from a meta-initialization point and learns the meta-initialization parameters with outer updates. It has recently been hypothesized that representation reuse, which makes little change in efficient representations, is the dominant factor in the performance of the meta-initialized model through MAML in contrast to representation change, which causes a significant change in representations. In this study, we investigate the necessity of representation change for the ultimate goal of few-shot learning, which is solving domain-agnostic tasks. To this aim, we propose a novel meta-learning algorithm, called BOIL (Body Only update in Inner Loop), which updates only the body (extractor) of the model and freezes the head (classifier) during inner loop updates. BOIL leverages representation change rather than representation reuse. This is because feature vectors (representations) have to move quickly to their corresponding frozen head vectors. We visualize this property using cosine similarity, CKA, and empirical results without the head. BOIL empirically shows significant performance improvement over MAML, particularly on cross-domain tasks. The results imply that representation change in gradient-based meta-learning approaches is a critical component.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源