论文标题
飞机上的条纹和掷骰的衰减
Decay of streaks and rolls in plane Couette-Poiseuille flow
论文作者
论文摘要
我们通过“淬火”实验报告了对平面couette-poiseuille流动湍流的衰减的实验研究结果,在该实验中,雷诺数$ re $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $。具体而言,我们研究了流向跨界平面中的速度场。我们表明,含卷的跨度速度比流向速度的衰减速度快,流向速度,该速度显示出称为条纹的较高或更低速度的细长区域。在最终的雷诺数字以上是425以上,条纹的衰减显示了两个阶段:首先是卷卷时缓慢的衰变,其次仅是条纹的更快衰变。行为的差异是由于卷卷的再生所致,称为提升效果。我们将湍流分数定义为含有湍流的流量的一部分,这是通过阈值的跨度速度分量来估计的。在最终$ re $的整个范围内,它随着时间的推移而降低。相应的衰减斜率与最终$ re $线性增加。此衰减斜率消失的推断值为$ re_ {a_z} \大约656 \ pm10 $,接近$ re_g \ \ re_g \ of 670 $,湍流是自我维持的。发现从Spanwise速度分量计算出的能量的衰减被发现是指数的。相应的衰减速率与$ re $线性增加,并以$ re_ {a_z} \大约688 \ pm10 $的推断为消失的值。该值也接近自我维持的湍流的价值,表明可以在$ re $ $ $的范围内获得有关过渡的有价值信息。
We report the results of an experimental investigation into the decay of turbulence in plane Couette-Poiseuille flow using 'quench' experiments where the flow laminarises after a sudden reduction in Reynolds number $Re$. Specifically, we study the velocity field in the streamwise-spanwise plane. We show that the spanwise velocity containing rolls, decays faster than the streamwise velocity, which displays elongated regions of higher or lower velocity called streaks. At final Reynolds numbers above 425, the decay of streaks displays two stages: first a slow decay when rolls are present and secondly a more rapid decay of streaks alone. The difference in behaviour results from the regeneration of streaks by rolls, called the lift-up effect. We define the turbulent fraction as the portion of the flow containing turbulence and this is estimated by thresholding the spanwise velocity component. It decreases linearly with time in the whole range of final $Re$. The corresponding decay slope increases linearly with final $Re$. The extrapolated value at which this decay slope vanishes is $Re_{a_z}\approx 656\pm10$, close to $Re_g\approx 670$ at which turbulence is self-sustained. The decay of the energy computed from the spanwise velocity component is found to be exponential. The corresponding decay rate increases linearly with $Re$, with an extrapolated vanishing value at $Re_{A_z}\approx 688\pm10$. This value is also close to the value at which the turbulence is self-sustained, showing that valuable information on the transition can be obtained over a wide range of $Re$.