论文标题

空间 - 光谱FFPNET:基于注意的金字塔网络,用于分割和分类遥感图像

Spatial--spectral FFPNet: Attention-Based Pyramid Network for Segmentation and Classification of Remote Sensing Images

论文作者

Xu, Qingsong, Yuan, Xin, Ouyang, Chaojun, Zeng, Yue

论文摘要

我们考虑了高分辨率和高光谱遥感图像的分割和分类问题。与传统的天然(RGB)图像不同,遥感图像的固有大规模和复杂结构构成了主要挑战,例如空间对象分布多样性和光谱信息提取时,当现有模型直接用于图像分类时。在这项研究中,我们开发了一个基于注意力的金字塔网络,用于分割和分类遥感数据集。注意机制用于开发以下模块:i)一种新颖且强大的基于注意力的多尺度融合方法有效地融合了不同和相同尺度上有用的空间或光谱信息; ii)使用基于区域的注意力的区域金字塔注意机制解决了大规模遥感图像中目标几何大小的多样性;和III跨尺度注意力}在我们自适应的实用空间金字塔池网络中,适应了特征装满空间中的各种内容。通过组合这些基于注意力的模块来建立不同形式的特征融合金字塔框架。首先,提出了一个新颖的分割框架,称为重量空间特征融合金字塔网络(FFPNET),以解决高分辨率遥感图像的空间问题。其次,提出了端到端的空间 - 光谱FFPNET,用于对高光谱图像进行分类。在ISPRS Vaihingen和ISPRS POTSDAM高分辨率数据集上进行的实验证明了拟议的重量空间FFPNET所达到的竞争分割精度。此外,对印度松树和帕维亚大学高光谱数据集进行的实验表明,所提出的空间 - 光谱FFPNET优于高光谱图像分类中当前最新方法。

We consider the problem of segmentation and classification of high-resolution and hyperspectral remote sensing images. Unlike conventional natural (RGB) images, the inherent large scale and complex structures of remote sensing images pose major challenges such as spatial object distribution diversity and spectral information extraction when existing models are directly applied for image classification. In this study, we develop an attention-based pyramid network for segmentation and classification of remote sensing datasets. Attention mechanisms are used to develop the following modules: i) a novel and robust attention-based multi-scale fusion method effectively fuses useful spatial or spectral information at different and same scales; ii) a region pyramid attention mechanism using region-based attention addresses the target geometric size diversity in large-scale remote sensing images; and iii cross-scale attention} in our adaptive atrous spatial pyramid pooling network adapts to varied contents in a feature-embedded space. Different forms of feature fusion pyramid frameworks are established by combining these attention-based modules. First, a novel segmentation framework, called the heavy-weight spatial feature fusion pyramid network (FFPNet), is proposed to address the spatial problem of high-resolution remote sensing images. Second, an end-to-end spatial--spectral FFPNet is presented for classifying hyperspectral images. Experiments conducted on ISPRS Vaihingen and ISPRS Potsdam high-resolution datasets demonstrate the competitive segmentation accuracy achieved by the proposed heavy-weight spatial FFPNet. Furthermore, experiments on the Indian Pines and the University of Pavia hyperspectral datasets indicate that the proposed spatial--spectral FFPNet outperforms the current state-of-the-art methods in hyperspectral image classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源