论文标题
稳定的瑞利 - 无滑动边界之间的对流
Steady Rayleigh--Bénard convection between no-slip boundaries
论文作者
论文摘要
关于雷利 - 贝纳德对流的中心开放问题 - 从下方加热并从上方冷却的流体层中的浮力流动 - 垂直热通量如何依赖于强烈非线性方案中施加的温度梯度,而流量通常是湍流的。定量挑战是确定nusselt数字$ nu $如何取决于$ ra \ to \ ra \ to \ infty $ limit of rayleigh number $ ra $ limits的固定有限prandtl number $ pr $ pr $在固定空间域中的限制。雷利数学模型的实验室实验,数值模拟和分析尚未排除所提出的“经典” $ nu \ sim ra^{1/3} $或“ ultimate'$ nu \ sim ra^{1/2} $渐变缩放理论。在高$ ra $的运动方程式的许多解决方案中,有动态不稳定但具有湍流吸引子的特征。我们已经计算出这些稳定的解决方案,价格为$ ra $,最高$ 10^{14} $,$ pr = 1 $和各种水平周期。通过在每个$ ra $上选择这些卷的水平时期来最大化$ nu $,我们发现稳定的对流卷可以实现经典的渐近缩放。此外,在实验或模拟中,它们在可比较的参数中传递的热量比湍流对流多。如果湍流对流中的热传输继续以稳定卷中的热传输为主导,则无法达到最终的缩放。
The central open question about Rayleigh--Bénard convection -- buoyancy-driven flow in a fluid layer heated from below and cooled from above -- is how vertical heat flux depends on the imposed temperature gradient in the strongly nonlinear regime where the flows are typically turbulent. The quantitative challenge is to determine how the Nusselt number $Nu$ depends on the Rayleigh number $Ra$ in the $Ra\to\infty$ limit for fluids of fixed finite Prandtl number $Pr$ in fixed spatial domains. Laboratory experiments, numerical simulations, and analysis of Rayleigh's mathematical model have yet to rule out either of the proposed `classical' $Nu \sim Ra^{1/3}$ or `ultimate' $Nu \sim Ra^{1/2}$ asymptotic scaling theories. Among the many solutions of the equations of motion at high $Ra$ are steady convection rolls that are dynamically unstable but share features of the turbulent attractor. We have computed these steady solutions for $Ra$ up to $10^{14}$ with $Pr=1$ and various horizontal periods. By choosing the horizontal period of these rolls at each $Ra$ to maximize $Nu$, we find that steady convection rolls achieve classical asymptotic scaling. Moreover, they transport more heat than turbulent convection in experiments or simulations at comparable parameters. If heat transport in turbulent convection continues to be dominated by heat transport in steady rolls as $Ra\to\infty$, it cannot achieve the ultimate scaling.