论文标题
iPhantom:一个自动创建个性化计算幻象的框架及其在CT器官剂量测定中的应用
iPhantom: a framework for automated creation of individualized computational phantoms and its application to CT organ dosimetry
论文作者
论文摘要
目的:本研究旨在使用患者医学图像自动创建患者特定的幻影或数字通闻(DT),开发和验证一个新颖的框架Iphantom。该框架用于评估单个患者CT成像中的放射敏感器官的辐射剂量。方法:从患者CT图像中,使用用于多器官CT分割的基于学习的模型,iPhantom段选择了锚定器官(例如肝脏,骨骼,胰腺)。使用针对多器官幻象素体素开发的DIFFEYMORTHIC登记模型,从匹配的幻影模板中纳入了针对细分市场的器官(例如肠道)。在常规CT考试期间,最终的全患者幻象用于评估器官剂量。结果:iPhantom在XCAT(n = 50)和独立临床(n = 10)数据集上均已验证。 iPhantom准确地预测了所有器官的位置,锚固器官的骰子相似性系数良好(DSC)> 0.6,并且所有其他器官的DSC为0.3-0.9。对于大多数器官,iPhantom的剂量错误少于10%,这特别优于最新的基线方法(20-35%剂量误差)。结论:iPhantom可以自动创建患者特定的幻象,并且首次为CT剂量法提供了足够和自动化的患者特异性剂量估计。意义:新框架通过自动化将CHP的创建和应用到单个CHP的水平,实现更广泛,更精确的器官定位,为临床监测和个性化优化铺平道路以及大规模研究。
Objective: This study aims to develop and validate a novel framework, iPhantom, for automated creation of patient-specific phantoms or digital-twins (DT) using patient medical images. The framework is applied to assess radiation dose to radiosensitive organs in CT imaging of individual patients. Method: From patient CT images, iPhantom segments selected anchor organs (e.g. liver, bones, pancreas) using a learning-based model developed for multi-organ CT segmentation. Organs challenging to segment (e.g. intestines) are incorporated from a matched phantom template, using a diffeomorphic registration model developed for multi-organ phantom-voxels. The resulting full-patient phantoms are used to assess organ doses during routine CT exams. Result: iPhantom was validated on both the XCAT (n=50) and an independent clinical (n=10) dataset with similar accuracy. iPhantom precisely predicted all organ locations with good accuracy of Dice Similarity Coefficients (DSC) >0.6 for anchor organs and DSC of 0.3-0.9 for all other organs. iPhantom showed less than 10% dose errors for the majority of organs, which was notably superior to the state-of-the-art baseline method (20-35% dose errors). Conclusion: iPhantom enables automated and accurate creation of patient-specific phantoms and, for the first time, provides sufficient and automated patient-specific dose estimates for CT dosimetry. Significance: The new framework brings the creation and application of CHPs to the level of individual CHPs through automation, achieving a wider and precise organ localization, paving the way for clinical monitoring, and personalized optimization, and large-scale research.