论文标题
量子计算机上周期系统的动量空间统一耦合群集和转化量子集扩展
Momentum-Space Unitary Coupled Cluster and Translational Quantum Subspace Expansion for Periodic Systems on Quantum Computers
论文作者
论文摘要
我们证明了差异量子质量(VQE)模拟固态晶体材料的使用。我们将统一耦合群集ANSATZ调整到真实空间和动量空间表示中的周期性边界条件中,并将复杂的集群操作员直接映射到量子电路ANSATZ中,以利用由于保护动量保护而减少的激发操作员和汉密尔顿术语。为了进一步减少所需的量子资源,例如UCCSD振幅的数量,电路深度,所需的量子数量和测量电路数,我们研究了一种转化量子量子空间扩展方法(TransQSE),用于周期性汉密尔顿的本地化表示。此外,我们还展示了基于点组对称的值锥形方法的扩展到周期系统。我们比较了一系列二聚氢,氦气和氢化锂的一系列几何形状的准确性和计算成本,而动量空间网格点的数量越来越多,还显示了2D和3D氢和氦及其层次的VQE计算。我们提出的策略使使用近期量子硬件能够使用各种量子算法进行固态模拟。
We demonstrate the use of the Variational Quantum Eigensolver (VQE) to simulate solid state crystalline materials. We adapt the Unitary Coupled Cluster ansatz to periodic boundary conditions in real space and momentum space representations and directly map complex cluster operators to a quantum circuit ansatz to take advantage of the reduced number of excitation operators and Hamiltonian terms due to momentum conservation. To further reduce required quantum resources, such as the number of UCCSD amplitudes, circuit depth, required number of qubits and number of measurement circuits, we investigate a translational Quantum Subspace Expansion method (TransQSE) for the localized representation of the periodic Hamiltonian. Additionally, we also demonstrate an extension of the point group symmetry based qubit tapering method to periodic systems. We compare accuracy and computational costs for a range of geometries for 1D chains of dimerized hydrogen, helium and lithium hydride with increasing number of momentum space grid points and also demonstrate VQE calculations for 2D and 3D hydrogen and helium lattices. Our presented strategies enable the use of near-term quantum hardware to perform solid state simulation with variational quantum algorithms.